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Abstract: We consider a common risk measuring method namely Value-at-Risk (VaR). The easiest and the most 

prevalent method of calculating VaR is the variance-covariance method. This method is based on normal 
distribution assumption. However, there are a lot of inferences in literature that non-normal distributions are 

much more common than the normal distribution. Because of economic growth and political and financial issues, 

there can be possible higher or lower prices than normal ones in economic data, which are named outlier in 

statistic theory. In order to handle these data anomalies and distribution differences, robust estimation and testing 

methods have been determined and studied for last decades. In this study, we propose a new robust variance-

covariance estimator for calculating VaR value of a given portfolio. Simulation results show that the proposed 

estimator is more robust than the corresponding normal theory solutions. Also, a real data for different 

economical markets are analyzed to show the performances of the proposed estimators. 
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I. INTRODUCTION 

Estimating a loss in assets will not only contribute to financial businesses but also to other companies and 

individuals. Businesses, operating globally undertake more risk than those running their business on a national level. 

This additional threat needs to have an efficient risk management plan or otherwise the businesses will face financial 

problems or even bankruptcy. Understanding this threat international companies have started to develop 

countermeasures in order to asses and to defeat the risk. 

Value at risk (VaR) is a method, recommended by Basel standards, which is applied by several financial businesses 

to measure the risk. It identifies the highest probability of loss of value in assets or a given portfolio in a given time 

period. In other words, it displays the highest possible loss in value held within a certain period of time and a given 

confidence interval. Researches have shown that businesses can protect themselves from risk if an accurate 

estimation of VaR is done previously. This will also ensure a company's sustainability. Due to this, many parties 

including governments, external auditors, businesses within a supply chain, and labor unions have a high interest in 

these information. Calculating VaR is widespread not only because of its easiness to compute, also due to the 
acceptance by several businesses. Furthermore, it is recommended by the Bank of International Settlement (BIS). 

The risk of a portfolio is illustrated by a one digit number, which appears convenient to financial entities. 

There are several methods to calculate VaR, for instance the variance-covariance method (Jordan and Mackay, 

1997), Exponentially Weighted Moving Average (EWMA) method (Hendricks, 1996), Historical Simulation and 

Monte Carlo simulation method (Holton, 1998), Extreme Values method (Longin, 2000 and Ho et. all. 2000), 

Kernel density method (Butler and Schacter, 1997) Generalized Auto Regressive Conditional Heteroscedasticity 

(GARCH) method (Alexander, 1996) and Fractionally Integrated ARCH (Beltratti and Maronna, 1999).  

The simplest and the most common method is the variance-covariance method. This method is based on the 

assumption of normality. However, in literature, there are several studies underlining that non-normal distributions 

are more prevalent than the normal distribution in practice, see for example, Pearson (1932), Geary (1947), Huber 

(1981) and Tan and Tiku (1999). In addition, observations in a sample which are too small or too large as compared 
to the bulk of observations are called outliers. Since their presence adversely affects the efficiency of most statistical 

procedures (Tiku and Akkaya, 2004). Therefore, nonparametric methods and semi parametric methods have been 

studied to handle these distribution differences and data anomalies in order to calculate VaR values, see Duffie and 

Pan (1997), Pritsker (1997) and Kuester et all. (2006). However, using robust methods for analyzing in such 

situations are much more reliable than semi parametric and nonparametric methods. An estimator is called robust if 
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it is fully efficient under the assumed model and maintains high efficiency under the plausible alternatives of the 

assumed model, see Tiku and Akkaya (2004). There are only a few studies predicting VaR values in a robust way in 

literature. The main focus of these studies is to estimation of tails of profit and loss distributions, see Mancini and 

Trojani, 2007 and Gebizlioglu et. all, 2011. Additionally, there is no previous work of estimating robust version of 

volatility. For this reason, we propose a new robust method for calculating VaR using robust variance-covariance 

matrix.  

The rest of the paper organizes as follows, in chapter 2, we give a brief information about the standard variance-

covariance method, then we define a robust method for estimating variance-covariance matrix and with this new 

matrix we calculate new robust VaR value for a given asset or portfolio. In the next chapter, we simulate data from 

various distributions used in statistical analysis and compare two estimators. Lastly, we apply this estimator for 

different real data examples. Conclusion is given at the end of the paper. 

II. VARIANCE-COVARIANCE METHOD 

This parametric approach identifies parameters, which influence the value of a portfolio. It also illustrates the 

highest possible loss which occur due to fluctuations on a certain probability level. It is the method used by the 

RiskMetrics methodology and developed by JP Morgan. The method is based on the assumption of normal 
distribution. By assuming the normal distribution VaR of portfolios can be calculated in terms of a linear function of 

standard deviation of assets.  

With the variance-covariance method primarily the mean and the volatility (standard deviation) have to be attained 

in order to calculate VaR of portfolio, which contains n financial assets. Afterwards, the weight vector (w) has to be 

determined. Based on this, the mean and the standard deviation of the portfolio can be obtained  

1
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respectively. where i  is the mean of ith asset, iw  is the weight of ith asset in portfolio, ij  is the covariance 

between ith and jth asset and N is the number of assets in a given portfolio. Then VaR is calculated with the 

multiplication of this standard deviation and required probability, which is constant in normal distribution ( 1.96 

with the probability %95, 2.58 with the probability %99.) 

The advantage of this method is the easiness of computing. On the other hand, the disadvantage is the assumption of 

normal distribution. As illustrated in introduction part, using robust methods is more reliable in data analysis in the 

presence of outliers and distribution differences. The variance of a sample is not robust and affected by even one 

outlier. Therefore, VaR value based on the variance-covariance method is not robust as well. For this reason, we 

determine a robust estimator of variance-covariance matrix and the method for calculating VaR based on this robust 

variance-covariance matrix. 

III. ORTHOGONALIZED GNANADESIKAN-KETTERNRING ESTIMATE 

The Orthogonalized Gnanadesikan-Ketternring (OGK) estimator is based on the robust covariance matrix estimate 

defined by Gnanadesikan and Ketternring (1972). The defined variance-covariance matrix is symmetric but not 

necessarily positive semi definite. To overcome the problem of semi definiteness, Maronna and Zamar (2002) 

proposed a new estimate for mean vector and covariance matrices. The distinctive feature of the OGK estimation is 

that it combines the use of the actual measurements with an existing estimate of the covariance and hence implicitly 

accounts for any correlation between the sources of the measurements and for the way that these were obtained 

(Sequeira et all, 2011). The estimation procedure is very fast and easy to compute. 

Let 1 2, ,..., p

nx x x   be a dataset and (.)  and (.)  be robust univariate dispersion and location statistics and 

Let (.,.)v  be a robust estimate of the covariance of two random variables. Maronna and Zamar(2002) define a new 

robust variance-covariance matrix Z(X) and mean vector m(x) as follows: 
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1. Let 1( ( ),..., ( ))ndiag X X D and , 1,2,...,i n-1

i iy = D x        

2. Compute the correlation matrix [ ]jkCC  ,applying v to the columns of Y ,that is 1,jjC  and 

( , ), .jk j kC v Y Y j k   

3.   Compute the eigenvalues j and eigenvectors je of C and call E the matrix whose columns are the je `s, so 

that C = EΛE' ,where 1( ,..., ).pdiag  Λ  

4.   Let A = DE , and 
-1

i i iz = E'y = A x , so that i ix = Az  and define Z(X) = AΓA'  and m(x) = A  

where 1( ( ),..., var( ))pdiag var Z ZΓ  and 1( ( ),..., ( )) 'pZ Z   . 

Maronna and Zamar(2002) take v the Gnanadesikan-Kettenring estimator (Gnanadesikan and Kettenring,1972) 

which is,  
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Then the resulting estimate is called an OGK estimate. The procedure can be extended by iteration and by 

reweighting algorithm. To determine (.)  and (.)  and the properties of OGK matrix (consistent, semi definite, 

affine-equivariant) see Maronna and Zamar, (2002). For the influence function and other robustness properties of 

Gnanadesikan-Kettenring estimator also see Genton and Ma, (1999). 

With this predefined robust estimator of variance-covariance matrix, we calculate VaR value of a portfolio with 

traditional calculation method. The only difference between standard variance-covariance method and this proposed 

method is the estimator of volatility, which contains robustness and efficiency. 

IV. SIMULATION STUDY 

In this section, we compare variance-covariance method which is traditionally used with the proposed robust method 

in terms of VaR values. All the simulation results are based on [100,000/n] Monte Carlo runs. We use some models, 

which distributed near normal or contains outliers namely Dixon's outlier model -(n-1) observation come from 

normal distribution and one outlier (not known which one) comes from normal distribution with higher standard 

deviation value than the distribution that the bulks of data come from-, Contamination model -(1-p)% of the 

observation come from normal distribution with standard deviation S and p% of the observation come from normal 

distribution with standard deviation not equal to S, where p is a proportion differs from [0,1]- and Mixture model -

(1-p)% of the observation come from normal distribution with standard deviation S and p% of the observation come 

from other distributions near normal-. We use the following sample models to represent a large number of plausible 

alternatives. 

Sample Models: 

Model (1): Dixon's outlier model: (n-1) observations come from N(0,0.01) but one observation (we do not know 

which one) comes from N(0,0.04) 

Model (2): Dixon's outlier model: (n-1) observations come from N(0,0.01) but one observation (we do not know 

which one) comes from N(0,0.1) 

Model (3): Contamination model: 0.90N(0,0.01) +0.10N(0,0.03) 

Model (4): Contamination model: 0.90N(0,0.01) +0.10N(0,0.05) 

Model (5): Mixture model: 0.90N(0,0.01) +0.10Student t(2) 

Model (6): Mixture model: 0.90N(0,0.01) +0.10Student t(7) 
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Simulation results are given in Table 1. 

Table1 Simulated VaR values of different distributions 

Distribution Var-Cov Method OGK Method 

Model (1) 0.0114 0.0106 

Model (2) 0.0135 0.0103 

Model (3) 0.0133 0.0109 

Model (4) 0.0182 0.0114 

Model (5) 0.0231 0.0115 

Model (6) 0.0201 0.0108 

Table 1 shows that, VaR values calculated with OGK method are smaller than the values calculated with traditional 

method. In addition, the standart deviations, estimated with robust method are much more efficient than traditionally 

estimated standart deviations. This outcome approves the expectation since it is within the nature of robust statistics. 

V. APPLICATION 

We analyzed several different real data from different financial markets. We investigated Dow Jones from United 

States of America, DAX from Germany, Nikkei from Japan and BIST from Turkey. For obtaining a good portfolio, 

we took 5 different assets from each stock exchange within the years 01.01.2013 to 31.12.2013. Two operating in 

the financial market, one in the fitness sector, one in aviation and one in information technology. It may be noted 

that for the application part the weight matrix w is [0.2;0.2;0.2;0.2;0.2]. In other words the proportion of different 

assets in portfolio is equal. After obtaining the data from different stock exchanges, the descriptive statistics are 

calculated. Then the Q-Q plots are drawn for determining the distribution. The data are transformed into the form 

1

1

t t

t

P P

P






, where tP  is the closing price for a given asset in certain time t. 

The descriptive statistics of the assets of the German market can be found in Table 2. Respectively, these descriptive 

statistics of the Japanese, US American and Turkish stock exchange are given in Table 3,4 and 5. 

Table2. Descriptive statistics of assets from DAX 

 Mean Standard Deviation Skewness Kurtosis 
Asset 1 -0.0009 0.0168 0.295 2.834 

Asset 2 0.0004 0.0191 -0.120 0.871 

Asset 3 0.0008 0.0209 0.174 1.945 

Asset 4 -0.0011 0.0171 0.680 0.985 

Asset 5 -0.0021 0.0185 -0.045 1.068 

Table3. Descriptive statistics of assets from Nikkei 

 Mean Standard Deviation Skewness Kurtosis 

Asset 1 -0.001 0.0164 -0.371 1.252 

Asset 2 0.0008 0.0561 0.437 2.188 

Asset 3 -0.0002 0.0233 0.150 0.353 

Asset 4 -0.0008 0.0158 0.172 0.426 

Asset 5 -0.0007 0.0168 -0.343 2.472 

Table4. Descriptive statistics of assets from Dow Jones 

 Mean Standard Deviation Skewness Kurtosis 

Asset 1 -0.0008 0.0104 0.169 1.955 

Asset 2 -0.0001 0.0183 0.179 1.638 

Asset 3 0.0008 0.0168 0.211 1.295 

Asset 4 -0.0007 0.0183 -0.118 0.950 

Asset 5 -0.0028 0.0209 0.465 1.968 
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Table5. Descriptive statistics of assets from BIST 

 Mean Standard Deviation Skewness Kurtosis 
Asset 1 0.0022 0.0249 0.082 0.285 

Asset 2 0.0045 0.0342 0.533 1.855 

Asset 3 0.0029 0.0231 -0.384 1.853 

Asset 4 0.0059 0.0406 1.048 2.339 

Asset 5 0.0012 0.0251 0.210 1.902 

In order to determine the distribution of each assets, we use Q-Q plot technique. The Q-Q plots of each assets from 

different stock exchange are given in Figure 1-4. As illustrated in Figure 1, the Q-Q plots of asset 1,2,3 and 5 have 

some outliers, on the other hand, the distribution of asset 4 is not exactly normal but near normal. In Figure 2,3 and 

4 we have also some outliers and divergence from normal distribution. 

 

Figure1. Q-Q plots of the assets from DAX 
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Figure2. Q-Q plots of the assets from Nikkei 



American Research Journal of Business and Management, Volume 1, Issue 1, February 2015 

ISSN 2379-1047 

www.arjonline.org                                                                                                                         18 

 

Figure3. Q-Q plots of the assets from Dow Jones 
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Figure4. Q-Q plots of the assets from BIST 

To conclude, we give VaR values of different portfolios from each stock exchanges in Table 6. VaR values are 

calculated with %95 confidence levels, for one week and for 1000 dollars. As Table 6 shows, VaR values calculated 

with the traditional variance-covariance method are higher than VaR values calculated with the robust method. 
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Therefore, robust method is not affected by outliers and distribution divergences. The outcome of this method is 

more reliable and more accurate. 

Table6. VaR values of different stock exchanges 

Stock Exchange Var-Cov Method OGK Method 

Germany 10.973 4.531 

Japan 20.536 13.162 

USA 9.001 1.552 

Turkey 18.910 14.468 

VI.     CONCLUSION 

Traditionally, variance-covariance method are used in the context of Value at Risk calculation. The method is 
applied with the normal distribution assumption. However, efficiencies of the standard deviation estimator are low 

when the normality assumption is not satisfied. Also, the sample standard deviation estimator is nonrobust when the 

distribution is not normal and outliers in a sample are existing. 

In this paper, we define a new method of calculating VaR value with robust variance-covariance matrix, since the 

robust methods have been used to handle these data anomalies and departures from normality. Simulation studies 

and real data analysis underline that the VaR values calculated with robust method is more reliable and more 

accurate than those calculated with variance-covariance method. Additionally, variance-covariance matrices 

estimated with robust method are more efficient and more robust than the matrices estimated with normal theory. 
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