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AbstrAct
Novel recursive matrix algorithm for the transitive closure is proposed that is computationally more efficient than the 
closure theorem O(n4) and runs only slightly longer in time O(n3ln2(n)) than the Warshall algorithm O(n3). However, the 
proposed algorithm can be combined with advanced, extant algorithms by Chan, Zwick, and Margalit to further improve 
its bit operation performance. From the recursive matrix algorithm a simple criterium can be derived to ascertain whether 
some given adjacency matrix of a graph with n nodes already represents a transitive closure. If the criterium is met, the 
calculation of the transitive closure by any other algorithm can, obviously, be eschewed.

IntroductIon

Many problems in science and engineering may be cast 
in terms of directed or undirected graphs. Designing 
algorithms for solving graph problems is therefore both of 
practical importance and of theoretical interest. Finding the 
transitive closure of a binary relation over a finite set or of 
a corresponding graph is widely used technique in many 
areas of computing. The well-known Roy-Floyd-Warshall 
algorithm [1-6] solves the problem on a sequential computer 
architecture in O(n3) steps, where n is the dimension of the 
underlying set of vertices.

Finding the transitive closure of a directed graph is an 
important problem in many computational tasks. It is 
required, for instance, in the reachability analysis of 
transition networks representing distributed and parallel 
systems and in the construction of parsing automata in 
compiler construction. Recently, efficient transitive closure 
computation has been recognized as a significant subproblem 
in evaluating recursive database queries, since almost all 
practical recursive queries are transitive [7-10].

Transitive closure operation is also applied to compiler 
construction for parsing automata [11,12]. A major issue 
in transitive closure algorithms is the avoidance of time-
consuming redundant operations. Transitive closure is also 
closely associated with all-pairs shortest paths problems 
where shortest paths between arbitrary vertex pairs need to 
be determined [10, 13]. 

The transitive closure of a directed graph is defined as a graph 
in which an edge exists between two nodes A and B, if and 

only if there is a path from A to B in the original path. Given 
a directed graph, G(V,E) with V denoting the set of vertices 
and E denoting the set of edges in G, the transitive closure 
G* of G is defined as G*(V,E*) where E* contains edges (A,B) 
if and only if there exists a directed path from vertex A to 
vertex B in the original G. Finding the transitive closure of a 
binary relation over a finite set or of a corresponding graph 
is widely  used technique in many areas of computing. The 
problem can be solved by the Floyd-Warshall algorithm [1-6] 
or by repeated breadth-first search [8,14] or depth-first 
search [15] starting from each node of the graph.

Transitive closure is also a fundamental operation in 
solving reachability problems for database querying and in 
reachability analysis of transition networks in distributed 
systems. 

trAnsItIve closure AlgorIthms
The “squaring” algorithm for transitive closure states that 
given an adjacency matrix A of a graph G with n vertices the 
transitive closure matrix W* is given by 

W*=A+A2+ …. +An      eq.(1)

using Boolean operations OR (+) and AND (∙) and where 
A∙Aj=A(j+1). The computation time for eq.(1) is O(n4) bit 
operations. The well-known Roy-Warshall-Floyd [1-3] 
algorithm reduced the computation time from O(n4) to O(n3). 
Given the adjacency n x n matrix A with matrix elements a(i,j) 
of a graph G, the Warshall algorithm computes the adjacency 
matrix W* of the transitive closure of G by the following 
algorithm:

a(p+1)(i,j):=ap(i,j)+ap(i,k) ∙ ap(k,j)    1≤i,j,k≤n      eq.(2)
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For convenience, the sign ∙ will be suppressed in the following. 
The algorithm constructs a sequence of adjacency matrices 
Wo,…Wn, where Wo=A and each Wk represents all paths of G 
containing no intermediate vertices higher than k. For k>0, 
Wk is obtained from Wk-1 by looking up at all pairs of vertices 
(i,j) if there is a path from i to j representedin Wk-1, or if there 
are paths represented in Wk-1 going from i to k and from k to 
j. Since no path can contain a vertex higher than n Wn=W*.  
Many improvements of the basic Warshall algorithms have 
been proposed since then. The transitive closure problem 
is very well known [8,9] since Roy, Dijstra, Warshall, and 
Warren’s early work [1-4,16]. Recently, the complexity of 
the problem of the transitive closure has been rediscovered 
and new advanced algorithms have been developed in the 
pioneering work by Zwick [17-19], Margalit [20,21] and 
Chan [23-26] and others [27].

ProPosed AlgorIthm for trAnsItIve closure

If A is the adjacency n x n  matrix of the direct graph G then the 
novel algorithm is based on the following recursive relation

Wo=A

W(k+1)=Wk+Wk∙ Wk    k=0, ⌈ln2n⌉    eq.(3)

where ⌈x⌉ denotes the rounding of xεR to the next larger 
integer. The proof that the recursive generation of matrices 
Wk leads to the transitive closure is readily demonstrated. 
Any Wk, obtained by k iterations form eq. (3) for k larger than 
1 can be shown to be represented by the sum:

Where mj∈N  are integer numbers arising from the recursive 
relation (3). However, because the logic OR operation on any 
binary matrix A is idempotent, i.e. A=A+A, then

 
for any k,N≥ 2. Hence, the eq.(4) can be written in a more 
compact form as:

If n≤k2 then according to the transitive closure theorem the 
transitive closure has been reached. Thus, it is sufficient to do 
the iterations up to k=⌈ln2n⌉. Hence, the matrix for transitive 
closure W* is given by

For all n that can be expressed as n=2k with k∈N the rounding 
expression can be replaced by the argument itself. It is 
interesting to note that the factor in the runtime of ln2n has 
also been found in the context of related studies [27,28], albeit 

under different circumstances.  Thus, the proposed algorithm 
is equivalent to the squaring algorithm given in eq.(1) but has 
the advantage of avoiding calculation of all power matrices Ak 
for k=1,n. Moreover, because of the recursive relation, from 
the preceding analysis the following criterium for the status 
of the transitive closure can be derived. For a given matrix A 
one can ascertain using the operation 

A=A+A∙A           eq.(8a)

whether A represents indeed the transitive closure. If eq.(8a) 
holds the A must represent the transitive closure, i.e. A=W*. 
If A does not represent transitive closure then one obtains 
the inequality

A≠A+A∙A           eq.(8b)

Then, obviously, A≠W* and some more iterations of the 
recursive formula have to be computed to reach the transitive 
closure. This may be of great use in case of sparse matrices 
or in cases where reasonable guess may be warranted or 
sufficient extant information available that the transitive 
closure may have already been found or is being close of 
being attained. Thus, in many practical cases, where the 
reachability matrix is at least partially guaranteed, the above 
approach may effectively reduce the computational burden 
to a runtime of O(n2ln2n). Consequently, it is not necessary 
to apply the brute force method of the Warshall of O(n3) or 
more complex algorithms of O(ns) with s<3.

As an illustration consider the graph in Fig.1 with the 
associated adjacency Boolean matrix A (Fig.1).

 

Fig.1. Graph of 4 vertices with directed edges and the 
corresponding adjacency matrix.

In the traditional closure theorem one would calculate in 
addition to A calculate one would have to calculate the power 
matrices A2, A3, A4 given as

If one adds up A+A2+A3+A4 one gets the transitive closure 
W*.

For the Warshall algorithm the respective matrices to be 
calculated are A1, A2, A3, and A4 which are given by
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respectively, and the last matric A4=W* is the transitive 
closure. Using algorithm proposed here and given in eq.(3) 
one obtains W1 and W2 as

where the second matrix W2 is already the transitive closure, 
i.e. W2=W*.

Let’s now assume that an adjacency matrix of a directed 
graph with 5 vertices is given as

To make sure to obtain transitive closure for the underlying 
graph, we would have to apply the Warshall algorithm or a 
one of the more recent algorithms to calculate the transitive 
closure, W*. However, we may surmise by inspection (easy 
in this case) or have sufficient information that matrix A 
is already the transitive closure. One could confirm this 
supposition by performing the relatively simple operation 
given in eq. (8). Indeed, in this case, we’ll find that A=A+AA 
and the burden of a calculation by Warshall or any other 
direct or indirect algorithm can be safely avoided.

conclusIon
A new recursive matrix algorithm has been proposed that is 
equivalent to the transitive closure theorem and to Warshall 
algorithm and its successors. Its run time is O(n2ln2n) 
which is slightly longer than Warshall-Floyd algorithm and 
hence not particularly attractive, considering the recently 
proposed much more involved logarithms, some of which 
have a runtime as low as of lnn2.49 [28,29] as described above. 
However, the proposed matrix algorithm can take advantage 
of the recent more advanced algorithms and spawn potential 
new synergies. The main benefit of the algorithm, in our 
view, appears to be the criterium given in eq. (8) that allows 
to check whether a given adjacency matrix may already 
represent the transitive closure or may be very close to the 
transitive closure. If the given adjacency matrix does not 
fulfill the transitive closure criterium, i.e., A≠A+A∙A, then  the 
objective of the future work is to find out, how close is A is, 
in terms of recursive loops in eq. (3), to the final solution W*. 
It may be surmised that it should be possible to derive such 
a proximity criterium to reach the final solution from a few 
iterations using the relation given in eq. (3).
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