
www.arjonline.org 68

American Research Journal of Computer Science and
Information Technology

Volume 7, Issue 1, 68-72 Pages
Research Article | Open Access
ISSN (Online)- 2572-2921
DOI : 10.21694/2572-2921.24015

Analysis and Design of High-Load Systems Based on
Microservice Architecture

Denis Shelmanov
Frontend Engineer, INUI Gaming, Serbia, Belgrade.

Abstract
Within the framework of this work, methods of designing highly loaded systems based on a microservice architecture
were studied, which allows the creation of flexible and scalable IT infrastructures to ensure resistance to intense loads.
By splitting into independent modules, the microservice architecture improves reliability and reduces the dependency
between services.

The main objectives of the research include the development of a methodology for system decomposition, optimizing
resource use, and ensuring fault tolerance, which is achieved through the use of Event Sourcing and CQRS patterns that
provide state management and asynchronous event processing. Additionally, to achieve high adaptability and scalability,
containerization, and orchestration of services through Kubernetes are used, which allows for dynamic load distribution
and simplifies service management in conditions of intensive operation. The results of the analysis confirmed that the
implementation of a microservice architecture minimizes system response time, improves data consistency, and reduces
the risk of failures.

In turn, the findings demonstrate that the microservice approach to the design of high-load systems provides flexibility,
independent scaling, and adaptability, which is critically important for modern information platforms focused on
continuous operation and prompt response to changes in load.

Keywords: microservice architecture, high-load systems, fault tolerance, containerization, Kubernetes, Event
Sourcing, CQRS, scalability, independent deployment.

INTRODUCTION
High-load systems represent complex architectural solutions
essential for supporting large information platforms such as
social networks, online stores, and data streaming services.
As the number of users, data volume, and requests increase,
the system load intensifies, requiring high resilience and
flexibility. Traditional monolithic systems in these conditions
often encounter scalability and fault-tolerance issues, making
the transition to more flexible architectural approaches, such
as microservices architecture, a necessary step to ensure
reliable performance.

The relevance of this research topic is driven by the need
to develop resilient and flexible systems for large platforms
operating under high loads. The shift to microservices
architecture not only addresses scalability and resilience
challenges but also optimizes resource management
processes. In the context of continually increasing demands
for performance and availability, automation and service
orchestration methods, such as containerization and the use

of Kubernetes, are particularly important. These technologies
enable dynamic scaling, which is crucial for applications
operating under conditions of unpredictable load growth.

The aim is to analyze and develop approaches to designing
high-load systems based on microservices architecture.

MATERIALS AND METHODS
To conduct a comprehensive study of this topic, literature
analysis, data systematization, and a comparative method
were employed, along with an examination of companies’
practical experiences.

Microservices architecture (MSA) has become a key
approach in developing complex and scalable systems due
to its flexibility and ability to simplify the management of
large codebases [1]. Desai V., Koladia Y., and Pansambal S. [1]
highlight the advantages of MSA over monolithic systems,
noting improved scalability, flexibility, and resilience to
changes. However, they emphasize the need for careful
management and technology selection for the successful
implementation of microservices.

www.arjonline.org 69

Analysis and Design of High-Load Systems Based on Microservice Architecture

The quality attributes of MSA were extensively studied in a
systematic review by Li S. et al. [2]. The authors found that,
despite improving system scalability and maintainability,
MSA introduces new complexities in the areas of security,
testing, and monitoring. This necessitates the development
of new methods and tools for effective management of these
aspects.

Practical aspects of MSA implementation are discussed in
an online resource [3], which covers design patterns and
best practices. It emphasizes that the correct application
of architectural patterns and adherence to development
principles are critical for the successful adoption of MSA and
realizing its benefits [3].

Ao B. [4] proposes an integrated service system for
multipurpose business scenarios based on MSA. The author
concludes that the use of microservices in multicomponent
energy systems enhances management efficiency and
flexibility in adapting to various business processes.

In the context of high-load systems, Kornuta V. et al. [6]
demonstrate the application of MSA for information systems
using the example of the MedicinePlanner service. The main
conclusion is that microservices improve the scalability and
reliability of the system, which is especially important for
handling large volumes of data in the medical field [6].

Load balancing in MSA is a critical task addressed in the work
by Cao and co-authors [7]. They proposed an algorithm for
an API gateway in a microservices architecture designed for
smart cities. The results show that the developed algorithm
enhances request distribution efficiency and optimizes
resource usage, contributing to the stable operation of urban
services [7].

Rath C. K., Mandal A. K., and Sarkar A. [8] explore a scalable
microservices-based Internet of Things (IoT) architecture
to ensure device compatibility. They conclude that the
microservices approach provides modularity and flexibility
for IoT systems, facilitating the integration of various devices
and technologies [8].

Despite its advantages, MSA faces challenges in event
management and ensuring system consistency. Laigner R.
et al. [9] conducted an empirical study identifying the main
difficulties associated with event handling and proposed
solutions to improve system reliability and consistency.

The optimization of cloud systems based on MSA is examined
in the work of Daradkeh T., and Agarwal A. [10]. They
present a model and methods for optimizing a cloud-based
elastic management system founded on microservices. The
main conclusion is that MSA enhances elasticity and efficient
resource management in cloud environments [10].

Design patterns such as event sourcing and CQRS are applied
in the middleware model proposed by Youssef M. et al. [11].
This approach improves the scalability and manageability of
complex distributed systems based on a multi-micro-agent
system [11].

A comparison of MSA with serverless architecture is conducted
in the study by Fan C. F., Jindal A., and Gerndt M. [12]. They
find that MSA provides better performance for complex,
long-running applications, while serverless architecture is
effective for simple and event-driven tasks [12].

The application of microservices-based recommendation
systems is demonstrated through examples. The article [13]
provides a detailed analysis of Spotify’s recommendation
system. The main conclusion is that Spotify combines
collaborative filtering, natural language processing, and
audio analysis to create personalized recommendations,
enhancing user experience [13]. Similarly, [14] examines
LinkedIn’s job recommendation system. The platform applies
machine learning algorithms to personalize job suggestions
based on users’ professional skills, experience, and interests,
increasing relevance and search efficiency [14].

The next section will examine the practical aspects of this
topic in detail.

RESULTS AND DISCUSSION
Microservices architecture enables small development teams
to select the optimal technology stack best suited for each
service. The rapid development of technology and frequent
updates to development tools allow for quicker adoption
of new, more efficient solutions, which is particularly
relevant in microservices architecture [3]. Microservices
architecture adheres to a set of principles, such as high
cohesion, low coupling, separation into business-oriented
services, flexibility, and reusability. For example, MSA utilizes
modularity, allowing components to be easily adapted
to changes. Security requirements, including operating
system protection, secure data management, and adherence
to information security measures, are also essential for
enhancing system reliability and resilience.

This approach is widely adopted by leading companies to
support scalable, resilient, and adaptive systems in high-
demand environments. Examples of organizations utilizing
microservices architecture include:

Amazon – The AWS platform offers services based on
microservices architecture, allowing the company to provide
users with flexible and scalable solutions. AWS microservices
enable Amazon to deploy new features faster while
maintaining high performance for millions of users [12].

Spotify – The music streaming service uses microservices
to manage recommendations, process user data, and create
playlists. The microservices approach allows Spotify to quickly
update recommendation algorithms and deliver current
playlists to users without affecting other functions [13].

LinkedIn – LinkedIn uses microservices to manage social
graphs, job recommendations, and user profiles. This
approach helps the company ensure high availability and
reliability while working with millions of users, which is
especially important when handling large volumes of data in
real time [14].

www.arjonline.org 70

Analysis and Design of High-Load Systems Based on Microservice Architecture

These cases demonstrate the benefits of microservices
in terms of performance, adaptability, and resilience.
Microservices provide companies with the flexibility to scale
and maintain fault tolerance, enabling rapid responses to
shifting market demands and evolving user needs.

In addition to these strategic advantages, the flexible
development framework within microservices architecture
(MSDH) further enhances system quality and maintainability.
By implementing rigorous design criteria, such as
framework cleanliness, consistency, component reuse,
and the independence of business logic from underlying
systems, MSDH improves both the development process and
subsequent system maintenance. This setup allows individual
specialists or small teams to develop specific functions
independently, supporting flexible task distribution and
efficient project scaling.

Figure 1 illustrates how MSDH simplifies the addition of new
functions, facilitates future maintenance, reduces complexity
during scaling, and improves module interaction through
APIs, providing more efficient architectural development
[4].

Fig.1. Basic architecture of MSHD microservices [4]

However, choosing patterns requires consideration of
numerous factors, from throughput to fault tolerance. The
use of asynchronous message transmission systems, such
as Apache Kafka or RabbitMQ, allows for load balancing and
offloading of core services, reducing their reactivity and
thereby maintaining resilience under increased requests
[5].

The use of container technologies like Docker and
orchestration with Kubernetes greatly simplifies this
process, enabling real-time deployment of additional
microservice instances. Kubernetes automatically manages
resource allocation, ensuring service continuity and
minimizing downtime. This approach enhances the system’s
fault tolerance, while the autonomy of each microservice
minimizes the need for scaling infrastructure nodes not
involved in data processing [6].

Integrating a large number of independent services requires

specialized solutions for managing routing, load distribution,
and data encryption. In this context, service meshes
become essential tools. Platforms like Istio or Linkerd
provide comprehensive tools for automating interservice
communication, facilitating security policy compliance, load
balancing, and routing. Additionally, service meshes support
dynamic request routing management, ensuring quality of
service under high traffic volumes [7].

Under high-load conditions, systems must maintain consistent
states even in the event of failures. The use of the Event
Sourcing architectural pattern allows for tracking events
and restoring system state in case of unexpected situations.
Another key technique is Command Query Responsibility
Segregation (CQRS), which enables the separation of data
update and read processes, improving request handling
efficiency. Data storage systems must account for consistency
type—strong or eventual—depending on the specific
requirements of each microservice [8].

Asynchronous interaction between microservices using
Apache Kafka is one of the popular methods for load
distribution in high-load systems. For example, Uber
actively uses Kafka for asynchronous messaging between its
microservices, providing high speed and reliability in data
transmission. Kafka allows Uber to manage real-time events,
such as driver location tracking and route optimization.
The following code example demonstrates how to publish a
message in Kafka using the Kafka-python library:

from kafka import KafkaProducer
import json
producer = KafkaProducer(
 bootstrap_servers=[‘localhost:9092’],
 value_serializer=lambda v: json.dumps(v).
encode(‘utf-8’)
)
def send_event(event):
 producer.send(‘events_topic’, event)
 producer.flush()
Sending an event
send_event({“event_type”: “location_update”, “driver_id”:
123, “latitude”: 40.7128, “longitude”: -74.0060})

In this example, KafkaProducer sends a driver location update.
This event can be processed by a separate microservice
that analyzes and optimizes routes based on current traffic
conditions [9].

Scalability with Kubernetes is particularly useful for creating
services with high elasticity requirements, as seen in Netflix.
The company actively uses Kubernetes and Docker to scale
its microservices, which handle large volumes of multimedia
data. The Kubernetes platform allows Netflix to adjust
to fluctuating loads by launching additional instances of
required microservices and maintaining fault tolerance. A
sample manifest for deploying a microservice in Kubernetes
is provided below:

www.arjonline.org 71

Analysis and Design of High-Load Systems Based on Microservice Architecture

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-microservice
Spec:
 replicas: 3
 selector:
 matchLabels:
 app: my-microservice
 template:
 metadata:
 labels:
 app: my-microservice
 spec:
 containers:
 - name: my-container
 image: my-microservice-image:latest
 ports:
 - containerPort: 8080
 resources:
 limits:
 memory: “512Mi”
 cpu: “500m”
 requests:
 memory: “256Mi”
 cpu: “250m”

This YAML manifest deploys three replicas of a microservice
with resource consumption limits. The platform automatically
manages instance distribution and restarts instances if one
fails, minimizing the impact of failures on overall system
performance [10].

For organizations handling large volumes of transactional
data, such as Goldman Sachs, CQRS and Event Sourcing
models enhance data consistency and system reliability. In its
transaction management system, Goldman Sachs separates
commands (write operations) and queries (read operations)
through a CQRS architectural approach, improving
performance with asynchronous command processing and
enabling high-speed data handling. A simplified example of
code for CQRS with Event Sourcing is provided below:

from collections import defaultdict
Event storage
events = defaultdict(list)
Event Sourcing to save state
def save_event(aggregate_id, event):
 events[aggregate_id].append(event)
Apply events to restore state
def apply_events(aggregate_id):
 state = {}
 for event in events[aggregate_id]:
 if event[‘type’] == ‘update_balance’:
 state[‘balance’] = state.get(‘balance’, 0) +
event[‘amount’]
 return state
Saving events
save_event(1, {‘type’: ‘update_balance’, ‘amount’: 100})
save_event(1, {‘type’: ‘update_balance’, ‘amount’: -50})
Applying events
print(apply_events(1)) # Outputs state {‘balance’: 50}

This code demonstrates the basic principles of Event
Sourcing. Instead of storing each state separately, the system
saves events describing changes. This allows states to be
recreated based on all events and is beneficial for high-load
systems requiring precise transaction history and flexibility
in data handling [11].

These examples illustrate how leading organizations
leverage microservices, including advanced architectural
patterns like Event Sourcing and CQRS, to enhance data
consistency, performance, and system resilience in high-
load environments. Microservices architecture, with its
modular and decoupled design, provides companies with
the flexibility to scale, adapt, and maintain robust fault
tolerance. By adopting this approach, organizations are
better equipped to meet evolving market demands and user
needs, fostering sustainable growth and operational agility
across various domains.

CONCLUSION

The analysis and design of high-load systems based
on microservices architecture confirm its significant
advantages for creating resilient and flexible applications
capable of adapting to changing loads and user demands.
The study showed that a microservices approach to system
decomposition facilitates easier component management
and enhances service independence, which is essential
for ensuring reliability and minimizing failure risks. The
use of containerization and orchestration technologies,
such as Docker and Kubernetes, enables dynamic scaling
and deployment automation, reducing resource costs and
maintaining high performance under intensive system
operation.

The results demonstrated that implementing Event Sourcing
and CQRS patterns enhances data consistency and query
processing efficiency, which is critically important for high-
load platforms handling large volumes of information. Thus,
the application of microservices architecture, combined with
modern management and control tools, provides stability,
scalability, and flexibility, making it an optimal choice
for building applications in environments with growing
performance and availability requirements.

The conclusions of this study confirm that using a
microservices approach, strengthened by containerization
and orchestration, effectively addresses scalability, fault
tolerance, and system component independence challenges.

References
Desai V., Koladia Y., Pansambal S. Microservices: 1.	
architecture and technologies //Int. J. Res. Appl. Sci. Eng.
Technol. – 2020. – vol. 8. – No. 10. – pp. 679-686.

Li S. et al. Understanding and addressing quality 2.	
attributes of microservices architecture: A Systematic
literature review //Information and software technology.
– 2021. – vol. 131. – p. 106449.

www.arjonline.org 72

Analysis and Design of High-Load Systems Based on Microservice Architecture

Microservices Architecture. [Electronic resource] Access 3.	
mode: https://medium.com/design-microservices-
architecture-with-patterns/microservices-architecture-
2bec9da7d42a (accessed 10/23/2024).

Ao B. Integrated service system for multi-power 4.	
business scenarios based on micro-service architecture
//Reviews of adhesion and adhesives. – 2023. – vol. 11.
– No. 2.

Liaghat B. et al. Short-term effectiveness of high-load 5.	
compared with low-load strengthening exercise on
self-reported function in patients with hypermobile
shoulders: a randomized controlled trial // British
Journal of Sports Medicine. – 2022. – Vol. 56. – No. 22. –
pp. 1269-1276.

Kornuta V. et al. Using Microservice Architecture for 6.	
High-Load Information Systems on the Example of
MedicinePlanner Service //2022 12th International
Conference on Advanced Computer Information
Technologies (ACIT). – IEEE, 2022. – pp. 437-442.

Cao X., Zhang H., Shi H. Load Balancing Algorithm of API 7.	
Gateway Based on Microservice Architecture for a Smart
City //Journal of Testing and Evaluation. – 2024. – Vol.
52. – No. 3. – pp. 1663-1676.

Rath C. K., Mandal A. K., Sarkar A. Microservice based 8.	
scalable IoT architecture for device interoperability //
Computer Standards & Interfaces. – 2023. – Vol. 84. – pp.
103697.

Laigner R. et al. An Empirical Study on Challenges of 9.	
Event Management in Microservice Architectures //
arXiv preprint arXiv:2408.00440. – 2024.

Daradkeh T., Agarwal A. Modeling and optimizing micro-10.	
service based cloud elastic management system //
Simulation Modelling Practice and Theory. - 2023. – Vol.
123. – p. 102713.

Youssfi M. et al. Multi-Micro-Agent System middleware 11.	
model based on event sourcing and CQRS patterns //
Smart Trajectories. – CRC Press, 2022. – pp. 25-46.

Fan C. F., Jindal A., Gerndt M. Microservices vs Serverless: 12.	
A Performance Comparison on a Cloud-native Web
Application //CLOSER. – 2020. – pp. 204-215.

Inside Spotify’s Recommendation System: A Complete 13.	
Guide to Spotify Recommendation Algorithms.
[Electronic resource] Access mode: https://www.music-
tomorrow.com/blog/how-spotify-recommendation-
system-works-a-complete-guide-2022 (accessed
10/23/2024).

LinkedIn Jobs Recommendation Systems. [Electronic 14.	
resource] Access mode: https://pyimagesearch.
com/2023/08/07/linkedin-jobs-recommendation-
systems / (accessed 10/23/2024).

Citation: Denis Shelmanov, “Analysis and Design of High-Load Systems Based on Microservice Architecture”, American
Research Journal of Computer Science and Information Technology, Vol 7, no. 1, 2024, pp. 68-72.

Copyright © 2024 Denis Shelmanov, This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

