
www.arjonline.org 73

American Research Journal of Computer Science and 
Information Technology

Volume 7, Issue 1, 73-77 Pages
Research Article | Open Access
ISSN (Online)- 2572-2921
DOI : 10.21694/2572-2921.24016

Approaches to Optimizing Power Consumption of Android 
Applications: Practical Methods and Tools

Vladislav Terekhov
Mobile Applications Developer, Mobilesource Corp, Boca Raton, Florida, United States.

Abstract

Optimizing the power consumption of Android applications developed on the Java platform is a key factor in enhancing 
the user experience and extending the life of mobile devices. The high level of application power consumption is due 
to many factors, including working with sensors, network and processor. The article discusses the main optimization 
techniques, such as managing background processes, using data caching, reducing sensor and CPU activity, as well as 
using more efficient APIs and technologies such as WorkManager and App Standby Buckets. Code-level optimization and 
the competent use of third-party profiling tools can significantly reduce power consumption, extending the operating 
time of the device without recharging. Efficient energy management is becoming a priority for developers seeking to 
improve application performance and meet the needs of users in conditions of limited hardware resources.

Keywords: energy consumption optimization, Android applications, Java, mobile devices, background processes, 
profiling, API, data caching, energy saving.

Introduction

The optimization of energy consumption in mobile 
applications is one of the priority tasks in modern software 
development. As the number of mobile devices grows and 
application functionality increases, the issue of energy 
efficiency becomes more relevant. Android, as one of the most 
widely used operating systems, offers users a wide range of 
applications that can significantly affect the battery life of 
the device. High energy consumption leads to rapid battery 
depletion, which negatively impacts the user experience and 
causes dissatisfaction among consumers.

The task of optimizing energy consumption is especially 
important for applications developed on the Java platform, as 
this platform is widely used for creating Android programs. 
Applications running on Java may require significant 
computational resources, which can adversely affect the 
battery life of the device. Therefore, developing approaches 
to reduce energy consumption without compromising the 
functionality of the application becomes a crucial task for 
developers seeking to balance performance and energy 
savings.

Moreover, improving the energy efficiency of Android 
applications not only enhances the user experience but 
also allows developers to implement more complex 
features without increasing the load on the system. This 
is particularly important given the increasing diversity of 
hardware characteristics in mobile devices, which requires 
the development of universal solutions for managing energy 
consumption across different platforms.

The aim of this work is to analyze the main factors affecting 
the energy consumption of Android applications on the Java 
platform and to propose effective optimization methods 
aimed at reducing the energy consumption of mobile 
devices.

Reasons for Increased Energy Consumption in 
Android Applications

Mobile devices with the Android operating system attract a 
wide audience due to their intuitive interface and the vast 
number of available applications and games that can be 
downloaded from the Play Market with a single tap [1]. As of 
2024, 71.74% of mobile phones use the Android operating 
system. Figure 1 below shows the percentage of phones 
using different operating systems.



www.arjonline.org 74

Approaches to Optimizing Power Consumption of Android Applications: Practical Methods and Tools

Fig. 1. Percentage of phones using different operating 
systems [8].

Advanced users appreciate Android for its multitasking 
capabilities, reliability, lack of system crashes, and the wide 
range of built-in features, including the ability to replace 
standard programs with third-party alternatives. Developers 
value the system for its excellent documentation, cross-
platform development tools, and open architecture, which 
allows flexible management of system functionality. 

Manufacturers of smartphones and tablets annually expand 
their range of models, using displays of various types and 
sizes, as well as processors with different characteristics, 
striving to extend the battery life of devices. However, as 
functional capabilities increase, so does energy consumption, 
making the task of improving energy efficiency particularly 
relevant [1]. The energy consumption of mobile devices can 
be broken down into several key components: the operating 
system, applications, and hardware sensors. Android is a 
multilayer operating system based on the Linux kernel with 
unique extensions for memory management, interprocess 
communication, and power management. Above the kernel 
are system libraries and the Dalvik virtual machine, which is 
optimized for mobile processors with RISC architecture and 
features low memory consumption. 

For developers, Android provides the opportunity to use 
both native system libraries and development environments, 
such as ART, which was introduced with Android 4.4 and 
ensures faster application performance through ahead-of-
time code compilation. This enables developers to not only 
create more energy-efficient applications but also follow 
design recommendations that minimize system load [2].

Below, Table 1 describes the possible reasons for increased 
power consumption in Android applications.

Table 1. Possible reasons for increased power consumption of Android applications [3].

Reason Description
Frequent use of GPS and 
geolocation

Continuous or overly frequent determination of the user’s location via GPS or network data 
consumes a lot of energy due to the operation of sensors and antennas.

Unnecessary 
background processes

The application continues to run in the background, updating data or performing tasks, which 
increases power consumption even when the user is not actively using it.

Frequent data 
synchronization

Constantly accessing the internet to synchronize data with the server results in high energy 
consumption due to the use of mobile data or Wi-Fi.

Unoptimized animation 
and graphics

The use of complex graphic elements and animations without optimization can overload the 
processor and graphic chip, increasing battery consumption.

Improper sensor 
management

Continuous or unnecessary use of sensors (accelerometer, gyroscope, etc.) leads to excessive 
energy consumption.

Frequent interface 
updates

Frequent updates to the user interface (e.g., widgets, notifications) also lead to increased energy 
consumption.

Constant network usage Connecting to the internet to download ads, data, or multimedia elements frequently wakes up 
the device and drains the battery.

Background music and 
video usage

Playing multimedia content in the background or with the screen off requires significant 
resources and increases power consumption.

Unoptimized CPU usage Applications that overload the processor without proper optimization can cause excessive 
activity and high energy consumption.

Lack of data caching 
optimization

Frequent data requests from memory or the network without temporary caching increase the 
load on the processor and network, leading to higher power consumption.

Techniques for Optimizing Power Consumption in 
Android Applications

Several optimization strategies can be used to extend battery 
life in Android applications, each aimed at reducing power 
consumption and making more efficient use of system 
resources.

First, it is recommended to separate the data processing logic 
for mobile networks and Wi-Fi. This is because performance 
requirements can differ for each type of connection, and 
configuring separate algorithms can help optimize battery 
usage under different conditions.

Second, it is necessary to carefully analyze all background 



www.arjonline.org 75

Approaches to Optimizing Power Consumption of Android Applications: Practical Methods and Tools

processes to minimize unnecessary operations, thereby 
reducing system load [4]. 

It is also important to reduce the number of network requests 
by using data caching mechanisms. This allows previously 
loaded information to be accessed during subsequent 
operations, significantly lowering the frequency of network 
access. 

Batch transmission of network data can be a useful practice. 
This approach involves grouping network requests, which 
reduces the number of times the device accesses the network 
and decreases the frequency of waking from sleep mode. 

Attention should also be given to WorkManager, a modern 
API for managing background tasks. It supports the 
execution of deferred operations even after device reboot 
and integrates functionality from earlier APIs like Job 
Scheduler and FirebaseJobDispatcher, providing better 
battery management. 

Finally, the App Standby Buckets feature, available in Android 
Pie, improves application management by limiting access to 
system resources based on app activity [5].

For greater clarity, Table 2 describes other existing 
techniques for optimizing the energy consumption of 
Android applications.

Table 2. Techniques for optimizing the energy consumption of Android applications [5].

Technique Description
Optimization of location 
services

Limiting the frequency of location updates, using cached location data, or determining 
location via less energy-intensive network sources.

Limiting background 
processes

Using Android mechanisms to limit or suspend background processes, such as WorkManager 
and JobScheduler, to perform tasks only when necessary.

Efficient use of sensors Disabling unnecessary sensors and setting time intervals for sensor operation, such as the 
accelerometer or gyroscope, to reduce battery load.

Reducing data 
synchronization frequency

Adjusting data synchronization based on context, for example, syncing only when Wi-Fi is 
available or when the device is connected to a charger.

Optimization of 
animations and graphics

Using simpler animations and graphic elements, reducing the frame rate (FPS), and applying 
more efficient APIs like Canvas or SurfaceView.

Data caching Caching network data, images, and other resources to reduce the frequency of server requests 
and lower network energy consumption.

Optimizing network calls Combining network requests to perform batch operations, using HTTP/2 or more efficient 
protocols to reduce energy consumption.

Using push notifications Replacing frequent server polling with push notifications for alerts and updates, significantly 
reducing server requests and saving battery power.

Minimizing CPU activity Limiting CPU wake-ups via WakeLock, performing background tasks using energy-efficient 
threads.

Task scheduling Using delayed execution algorithms (lazy loading) and performing tasks at optimal moments, 
such as only when the device is charging or connected to Wi-Fi.

Using Android battery 
profiles

Integrating with the Doze and App Standby mechanisms for automatic management of app 
operation during device inactivity.

Local data processing Performing operations and processing data on the user’s device rather than making constant 
server requests to reduce network usage and save battery.

Tools and Methods for Analyzing Power Consumption 
in Android Applications 

When developing Android applications on the Java platform, 
there are several tools available for analyzing power 
consumption that help optimize device resource usage and 
extend battery life. Effective power management becomes 
critically important, especially with the increasing complexity 
of mobile applications and performance requirements. 
Below are the main tools for analyzing power consumption 
in the context of Java application development.

Android Profiler is a built-in tool in Android Studio designed 
to monitor application performance, including power 

consumption analysis. For Java applications, Android Profiler 
allows tracking resource usage, including CPU, memory, 
network, and battery consumption. The tool provides visual 
graphs that help developers identify which parts of the code 
cause significant power consumption. This is especially 
important when dealing with background services, network 
request activity, and interface animations.

For more detailed analysis, developers can use the built-in 
Batterystats utility in conjunction with Battery Historian. 
Batterystats collects data on the application’s energy 
consumption, including information about the device’s 
state, CPU activity, radio module usage, and the execution 



www.arjonline.org 76

Approaches to Optimizing Power Consumption of Android Applications: Practical Methods and Tools

of background processes. These data can be imported into 
Battery Historian, which converts them into visual graphs 
and reports, making it easier to identify “energy-intensive” 
sections of Java code and optimize application performance.

Java developers can also use third-party solutions like 
Qualcomm’s Trepn Profiler. This tool allows for detailed 
tracking of CPU, GPU, network, and other system components 
in real-time. It is important to note that Trepn Profiler is 
particularly useful for devices with Snapdragon chips, where 
it can collect low-level information on energy consumption 
and system load. This provides developers with a more 
accurate picture of how their Java code impacts the overall 
performance of the device and its power consumption.

For general monitoring and assessment of power 
consumption, developers can use GSam Battery Monitor. 
This tool is designed to track the power consumption of 
applications and the system as a whole. It helps identify Java 
applications that operate inefficiently, consume too many 
resources in the background, or make network requests too 
frequently, which may cause accelerated battery depletion.

In addition to monitoring tools, it is worth noting that the 
built-in Lint code analyzer in Android Studio also helps 
identify potential issues related to inefficient resource usage 
in Java applications. Lint analyzes code for errors that could 
lead to memory leaks, improper thread handling, or incorrect 
use of Android components, which can increase power 
consumption. Integrating this tool into the development 
process helps prevent performance and power consumption 
problems at early stages of development [6].

Profiling can also be employed as an important approach. 
For Android applications running on devices with limited 
hardware capabilities, such optimization becomes a key 
task. Efficient use of resources ensures high application 
performance and a positive user experience. Without the use 

of profiling methods, achieving optimal performance would 
be extremely difficult.

When profiling Android applications, several aspects should 
be considered, including memory management. Incorrect 
memory handling can lead to failures and errors, such as App 
Not Responding (ANR). Additionally, data processing directly 
impacts the user interface: if it is performed inefficiently, 
the application begins to slow down, which can result in 
interface freezing or complete stoppage. Network request 
management should also be considered—delays in data 
exchange with the server can degrade the user experience. 
Finally, power consumption optimization is a key factor, 
as applications with high battery usage are often quickly 
uninstalled by users.

Android profiling methods may include using developer 
tools available directly on the device. For example, to analyze 
GPU performance, rendering profiling can be enabled in the 
phone settings. The graphical interface displays information 
about the time spent rendering each frame, which helps 
identify problem areas.

Memory profiling plays one of the key roles in optimizing 
applications for mobile devices. With Memory Profiler, 
memory usage can be analyzed, leaks can be identified, and 
object allocation can be monitored. CPU profiling allows 
developers to determine how well the application handles 
the load, and network profiling helps detect delays in data 
exchange with servers. Battery consumption profiling helps 
analyze how energy-intensive the application is and which 
processes affect battery consumption [7].

Thus, profiling is a necessary step in the Android application 
development process, allowing developers to create efficient 
and high-performance applications for users. Summarizing 
the above, Table 3 describes the tools used to analyze the 
energy consumption of Android applications.

Table 3. Tools used to analyze the energy consumption of Android applications [7].

Tool/Method Description
Android Profiler 
(Android Studio)

A built-in tool in Android Studio for real-time application performance monitoring, including 
CPU, memory, network, and power consumption analysis.

Battery Historian A tool that analyzes battery logs and provides information about which applications and 
processes consume the device’s energy.

ADB Shell Dumpsys 
Battery

A command in Android Debug Bridge (ADB) that provides detailed information about the 
battery status and the energy consumption of various processes and application components.

System Tracing 
(Perfetto)

A low-level performance analysis tool that tracks CPU activity, GPU usage, I/O, and other 
metrics affecting power consumption.

Energy Profiler Part of Android Profiler, focused on measuring the application’s power consumption, tracking 
battery usage by apps and their components, such as sensors, GPS, and network.

Firebase Performance 
Monitoring

A remote performance monitoring tool that provides data on CPU load, response time, network 
delays, and the app’s impact on energy consumption.

Trepn Profiler A tool from Qualcomm that allows developers to analyze CPU, GPU, and memory usage and 
measure the real-time energy consumption of mobile devices.

GAPID (Graphics API 
Debugger)

A tool for analyzing and debugging the graphics API on Android devices, enabling the 
optimization of graphics and reduction of power consumption through rendering optimization.



www.arjonline.org 77

Approaches to Optimizing Power Consumption of Android Applications: Practical Methods and Tools

GFXBench Battery Test A test for evaluating graphics performance and energy consumption, assessing how long a 
device can operate under graphical load.

PowerProfile Monitoring An Android API that allows developers to create energy consumption profiles for device 
components and adjust optimal power consumption for different application use cases.

Systrace A system performance analysis tool that tracks CPU, GPU, and thread usage, which can influence 
power consumption.

LeakCanary A library for detecting memory leaks that can indirectly impact power consumption, as the app 
consumes more resources to operate.

LINT (Battery-related 
checks)

A static code analyzer in Android Studio that checks for issues related to inefficient resource 
and battery usage.

ACTS (Android 
Compatibility Test Suite)

A set of tests used to check the device’s compatibility with Android and evaluate its behavior, 
including app energy consumption.

Conclusion

In conclusion, optimizing the energy consumption of 
Android applications on the Java platform is one of the most 
important tasks for developers aiming to improve the energy 
efficiency of their products. The application of profiling and 
code optimization methods, as well as the use of modern 
Android tools, not only extends the battery life of mobile 
devices but also significantly enhances the user experience. 
This is particularly relevant given the growing demands for 
mobile application functionality and the limited resources of 
device batteries.

References

Izergin D. A. et al. Onka computer security of the 1.	
Android mobile operating system //Russian Journal of 
Technology. – 2020. – vol. 7. – No. 6. – pp. 44-55.

Adeshchenko K. R. Sustainable mobile development: 2.	
approaches to creating energy-efficient applications //
Innovation and investment. - 2024. – No. 3. – pp. 296-
300.

Novikov K. D., Raskatova M. V. Energy efficiency of 3.	
mobile web applications //Bulletin of the Russian New 
University. Series: Complex systems: models, analysis 
and management. – 2021. – No. 2. – pp. 101-110.

Nalivaiko, A. S. Recommendations on memory 4.	
implementation in Java / A. S. Nalivaiko // Young 
Scientist. — 2020. — № 24 (314). — Pp. 59-63.

Hort M. et al. Review of mobile application performance 5.	
optimization //IEEE Transactions on Software 
Engineering. – 2021. – vol. 48. – No. 8. – pp. 2879-2904.

Opeyemi B. M. The path to sustainable energy 6.	
consumption: the possibility of replacing non-renewable 
energy sources with renewable ones //Energy. – 2021. – 
vol. 228. – p. 120519.

Ulla I. et al. Protection of personal attributes when 7.	
profiling mobile users based on applications //IEEE 
Access. – 2020. – Vol. 8. – pp. 143818-143836.

20 Android Statistics For 2024. [Электронный ресурс] 8.	
Режим доступа: https://www.demandsage.com/
android-statistics/ (дата обращения 28.09.2024).

Citation: Vladislav Terekhov, “Approaches to Optimizing Power Consumption of Android Applications: Practical 
Methods and Tools”, American Research Journal of Computer Science and Information Technology, Vol 7, no. 1, 2024, 
pp. 73-77.

Copyright © 2024 Vladislav Terekhov, This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited.


