
www.arjonline.org 6

American Research Journal of Computer Science and
Information Technology

Volume 7, Issue 1, 6-10 Pages
Research Article | Open Access
ISSN (Online)- 2572-2921
DOI : 10.21694/2572-2921.24002

Designing System Architecture with High Availability and
Scalability
Nikhil Badwaik

Software Engineer at NIKE INC, Portland OR, USA.

Abstract
The article discusses modern approaches and methods of designing systems that can adapt to changing operating conditions
and market requirements. The emphasis is on the need to integrate scalability and reliability into architectural solutions
that ensure smooth operation under various loads. This paper elaborates on the principles of designing scalable systems,
encompassing the utilization of templates, antipatterns, subsystem decomposition, and asynchronous data processing.
Strategies for high availability and fault tolerance, including data replication and the use of distributed databases, are
also highlighted. The importance of collaboration of various components of the system with minimizing dependencies is
emphasized to achieve optimal performance and save resources.

Keywords: scalability, architecture development, programming, software, modern technologies.

Introduction
In modern online application development, it is important
to build platforms that not only function efficiently under
various workloads but can also scale in response to changing
market demands. Designing a system architecture with
high availability and scalability is a critical task in today’s
world where businesses and services depend on the smooth
operation of IT infrastructure. As the number of users and
the amount of data to be processed increases, traditional
monolithic systems face scalability and reliability challenges.
High system availability ensures that services are available
to users at all times, minimizing downtime and financial
losses. Scalability allows the system to efficiently handle
increasing workloads, enabling growth without significant
changes in the architecture. The relevance of this topic is due
to the rapid development of digital technologies, increased
requirements for quality of service, and the need to adapt to
rapidly changing market conditions. The main challenge is to
find a balance between availability, scalability, performance,
and cost-effectiveness, which requires a deep understanding
of different approaches and technologies in the field of
system architecture.

General characterization
When designing database architectures for cloud applications,
it is critical to ensure high availability, performance,
scalability, fault tolerance, and disaster recovery. Traditional
on-premises web application development environments

often have infrastructure constraints, limited access to
developer resources, operating group support, the need
to scale resources to cope with peak loads, and ongoing
infrastructure maintenance requirements. The development
process is dependent on the availability of new technologies
and infrastructure, which can delay the realization of
business functions.

Alternatively, databases can be categorized as relational
database management systems (RDBMS) and non-relational
NoSQL databases. The choice between these technologies
depends on specific requirements and usage scenarios.
NoSQL databases, such as document-oriented or key-value
stores, support flexible schemas and are often chosen for
their ability to scale horizontally, which is ideal for high-
performance scenarios.

In localized environments, scaling is often a challenge.
Estimating expected load and tuning hardware resources
requires going through several levels of approval and
justification. In contrast, cloud environments offer the
flexibility to dynamically scale resources in response to
performance changes, which also helps to optimize resource
utilization and manage the cost of cloud services [1].

Scaling is commonly categorized into horizontal and vertical
scaling (Fig.1.). Vertical scaling increases the allocated
resources (CPU, memory, storage) for the database, which
provides immediate performance improvement and the
ability to process more transactions. In a cloud environment,

www.arjonline.org 7

Designing System Architecture with High Availability and Scalability

the process of vertical scaling is simplified by the ability
to resize database instances on the fly, without the need
to physically deploy new hardware. This allows quick
adaptation to changing performance requirements, reducing
unnecessary costs.

Fig 1. Horizontal and vertical scaling [2].

Horizontal scaling is a strategy to increase query processing
and manage the growing workload that exceeds the capacity
of a single database instance. This technique allows adding
additional database instances, thus realizing scaling through
expansion [2].

There are several approaches to horizontal database
scaling:

Adding read replicas to reduce the load on the main •	
database by processing read operations on separate
servers.

Caching data before querying the main database to •	
reduce the frequency of database accesses.

Sharding or splitting the database into multiple parts •	
that are distributed across different servers to improve
both read and write data performance.

In a cloud environment, horizontal scaling is made easier
by the ability to dynamically manage database instances
according to the current workload. This eliminates the need
to maintain large instances during periods of low activity,
thereby enabling cost optimization.

There are costs associated with using automatic database
scaling in a cloud environment, but these costs are directly
correlated to application traffic and workload. Conducting
load tests on different database instance sizes can help
determine optimal read and write performance metrics that
meet business requirements and service level agreements
(SLAs).

Next, let’s look at the basic principles of scalability. The
principles of scalability form a framework for understanding
and designing systems that can adapt to changes in workload.
These fundamentals include the behavioral and structural
aspects on which all scalable design patterns, rules, and
anti-patterns are based. Mastering these principles enables

the design of scalable systems without the need for in-
depth study of every detail of such systems. Architectural
and design choices should be guided by these fundamental
principles:

Simplicity: Simplicity of design facilitates not only •	
scalability but also system development, deployment,
maintenance, and support.

Partitioning: Effectively dividing the system into smaller, •	
manageable subsystems allows each subsystem to
perform autonomous functions. These subsystems
can function independently in separate processes or
threads, scaling through a variety of load balancing and
customization techniques.

Asynchronous: Asynchronous processing allows the •	
system to perform tasks without blocking resources,
although it requires complex design and testing
approaches due to its peculiarities.

Loose coupling: Reducing coupling and increasing •	
coupling is key to increasing application scalability. Low
coupling provides flexibility in choosing optimization
strategies for different subsystems, whereas high
coupling can complicate the interaction between
components by requiring a combination of local and
remote calls to perform operations.

Parallelism and Parallelization: Parallelism allows •	
multiple tasks to execute simultaneously using shared
resources, while parallelization means dividing a
single task into many independent tasks capable of
simultaneous execution.

Economical use of system: Economical use of system •	
resources is important to the architect and developer.
Efficient use of resources such as CPU, disk, memory,
network, and databases not only increases efficiency but
also minimizes the consumption of scarce resources.

Decentralization/Distribution: Distributed systems •	
consist of subsystems that run on independent servers
and are perceived by users as a single system. Such
systems provide high scalability and availability by
allowing additional servers to be added [3].

Existing strategies
Database caching. In the development of distributed systems
that require high performance to meet SLA (Service Level
Agreement) standards, database optimization is key. A
sound caching strategy can significantly improve application
performance and reliability, reducing database load and
lowering operational costs. Implementing a cache allows
frequently requested data to be stored directly in memory,
minimizing the need for repeated costly database queries.
Queries that require accessing multiple tables or executing
complex stored procedures become much more efficient
if values are retrieved from the cache in a fraction of a
millisecond instead of each database access (Fig.2.).

www.arjonline.org 8

Designing System Architecture with High Availability and Scalability

Fig 2. Example of caching [2].

Database performance improvement can be achieved
through the use of advanced query optimization techniques.
However, for data that is frequently accessed, it is possible to
significantly reduce the load on the database and speed up
the response time by implementing in-memory caching of
this data. Based on the analysis of performance requirements
and data access patterns, develop a personalized caching
strategy by determining which data should be cached and
setting cache retention times [4].

Database sharding. With increasing traffic and application
scale, it may be necessary to consider techniques to optimize
database performance, among which sharding occupies
an important place. Sharding allows data to be distributed
across different servers, which satisfies the scalability needs
of modern distributed systems and allows large amounts of
data to be managed more efficiently. This technique improves
the performance of both read and write operations as each
database serves a smaller amount of data. Sharding can be
thought of as the process of creating separate databases,
each functioning as an independent segment.

When implementing sharding, data is distributed across
different nodes based on the so-called shard key. Each shard
contains only part of the data, which facilitates faster and
more efficient data management in each shard. Operations
are performed in parallel across all segments, which can be
compared to horizontal partitioning, in which data is divided
among multiple stores to achieve horizontal scalability
(Figure 3).

Fig 3. An example of database sharding [2].

Database design in microservice architecture. Handling
database changes in a microservices architecture is
challenging. When developing cloud services, each
microservice must have its own separate database. This will
allow deployment and scaling of microservices independently.
In the diagram below, all four services will have different
loads, so it makes sense to have separate data stores. This
type of design can be called decentralized data management
architecture and is a very common pattern when designing
highly scalable distributed systems.

When these services have a single monolithic shared
database, it is very difficult to scale the database based on
traffic spikes. This design pattern is typical for traditional
applications in which data is often distributed among different
components. However, tight coupling between services will
prevent service changes from being deployed independently.
The only option is to scale the entire monolithic database -
scaling a single component is not possible [5].

Load Balancing Methods

In the realm of scalable system design, load balancing emerges
as a pivotal element that ensures optimal performance
and reliability. By evenly distributing incoming requests
across multiple servers, load balancing prevents any single
server from becoming a bottleneck, thereby enhancing both
availability and efficiency.

Round Robin load balancing is a fundamental technique that
distributes incoming requests sequentially across a set of
servers. This method is predicated on the assumption that
all servers have equivalent capacity and performance. The
essence of Round Robin lies in its simplicity: each server
receives a request in turn, forming a continuous loop.

In practice, this method operates by cycling through the list
of available servers. For instance, if there are three servers,
the first request goes to Server 1, the second to Server 2, the
third to Server 3, and the fourth request returns to Server
1. This cyclical allocation ensures that no single server is
disproportionately loaded, provided that the servers are
homogenous in capability [6].

www.arjonline.org 9

Designing System Architecture with High Availability and Scalability

Fig 4. Round Robin load balancing

However, the simplicity of Round Robin can be a double-edged sword. In environments where server capacities vary
significantly, this method can lead to inefficiencies, as it does not account for the current load or the individual server
performance metrics.

The Least Connections method offers a more dynamic approach to load distribution by directing traffic to the server with
the fewest active connections. This method is particularly advantageous in scenarios where connection durations are highly
variable and can significantly affect server load.

Operationally, each server maintains a count of active connections. When a new request arrives, the load balancer assigns it
to the server with the lowest connection count. This approach ensures a more balanced load distribution, as it dynamically
adjusts to the fluctuating state of server workloads [7].

Fig 5. Least Connections Load Balancing

For example, in a web service scenario where some requests may result in long-running connections, directing new requests
to the least loaded server helps maintain an even distribution of active connections, thereby optimizing response times and
resource utilization.

IP Hash load balancing introduces a deterministic method of traffic distribution based on the client’s IP address. By hashing
the IP address and mapping the resultant hash to a specific server, this method ensures that requests from the same client
are consistently directed to the same server [8].

Fig 6. IP Hash Load Balancing

www.arjonline.org 10

Designing System Architecture with High Availability and Scalability

This method is particularly useful for maintaining session
persistence, as it allows for stateful interactions where
client-specific data must be stored on a particular server. The
deterministic nature of IP Hash also aids in load predictability
and can simplify debugging by ensuring a consistent routing
of client requests.

In environments where server capacities are heterogeneous,
Weighted Load Balancing becomes indispensable. This
method assigns a weight to each server, reflecting its
processing capacity or performance characteristics. Servers
with higher weights receive a proportionally larger share of
the incoming traffic [9].

Fig 7. Weighted Load Balancing

The implementation involves calculating the proportion
of requests each server should handle based on its weight.
For instance, if Server A has a weight of 5 and Server B has
a weight of 1, Server A will handle three times as many
requests as Server B. This proportional distribution ensures
that more capable servers are utilized to their full potential,
thereby optimizing overall system performance.

Conclusion
Designing a system architecture that is highly available and
scalable requires a holistic approach that considers both
functional and non-functional requirements. The design of
such systems involves the application of proven principles
and design patterns that ensure the system is flexible,
reliable, and able to adapt to changing operating conditions.
Particular attention is paid to asynchrony, decomposition
into subsystems, reducing the degree of coupling between
components, and the use of data replication and distribution

techniques to ensure fault tolerance and increase availability.
Efficient use of resources and integration with modern cloud
technologies allow achieving high performance at minimal
cost. The approaches described in the paper show how
theoretical knowledge can be successfully applied in practice
to create scalable and reliable systems that can meet current
and future business needs.

References
Building Blocks of a Scalable Architecture. [Electronic 1.	
resource] Access mode: https://dzone.com/articles/
component-load-testing (accessed 8.05.2024).

Designing Highly Scalable Database Architecture. 2.	
[Electronic resource] Access mode: https://www.
red-gate.com/simple-talk/databases/sql-server/
performance-sql-server/designing-highly-scalable-
database-architectures / (accessed 8.05.2024).

Architecture design experience: high availability and 3.	
scalability. [Electronic resource] Access mode: https://
www.codetd.com/en/article/14194381 (accessed
8.05.2024).

Design for scale and high availability. [Electronic 4.	
resource] Access mode: https://cloud .google.com/
architecture/framework/reliability/design-scale-high-
availability (accessed 8.05.2024).

Patterns and Anti-Patterns for Scalable and Available 5.	
Cloud Architectures. [Electronic resource] Access
mode: https://www.infoq.com/news/2014/04/Cloud-
Architecture-Patterns / (accessed 8.05.2024).

Round Robin Load Balancing Definition. [Electronic 6.	
resource] Access mode: https://avinetworks.com/
glossary/round-robin-load-balancing/

Alankar B. et al. Experimental setup for investigating the 7.	
efficient load balancing algorithms on virtual cloud //
Sensors. – 2020. – Т. 20. – №. 24. – С. 7342.

SOURCE IP HASH LOAD BALANCING FOR APPLICATION 8.	
PERSISTENCY. [Electronic resource] Access mode:
https://blogs.infoblox.com/community/source-ip-
hash-load-balancing-for-application-persistency/

Jyoti A. et al. Cloud computing using load balancing and 9.	
service broker policy for IT service: a taxonomy and
survey //Journal of Ambient Intelligence and Humanized
Computing. – 2020. – Т. 11. – С. 4785-4814.

Citation: Nikhil Badwaik, “Designing System Architecture with High Availability and Scalability”, American Research
Journal of Computer Science and Information Technology, Vol 7, no. 1, 2024, pp. 6-10.

Copyright © 2024 Nikhil Badwaik, This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

