
www.arjonline.org 11

American Research Journal of Computer Science and 
Information Technology

Volume 7, Issue 1, 11-15 Pages
Research Article | Open Access
ISSN (Online)- 2572-2921
DOI : 10.21694/2572-2921.24003

Effectiveness of Different Approaches to Organizing Frontend 
Development

Nikhil Badwaik
Software Engineer at NIKE INC, Portland OR, USA.

Abstract
The research is devoted to the analysis of various approaches to the organization of Front-end development with an 
emphasis on optimizing the architecture of web applications. The main focus is on the impact of structural solutions 
on performance, scalability, and ease of maintenance. The work examines various architectural strategies, such as 
modular division, and the use of micro-frontends and hybrid approaches, and analyzes their effectiveness in the context of 
current trends in technology development. By comparing theoretical foundations and practical examples, the key factors 
influencing the choice of architecture for specific projects are identified. The study shows how adaptation to changing 
requirements and pre-planning contribute to the creation of stable and aesthetically pleasing web applications.

Keywords: front-end development, interface, organization of front-end development, IT, software, websites.

Introduction 

Front-end architecture represents a fundamental element 
of web application design, determining its structure, 
performance, and user interaction. Let us review the main 
aspects of this key concept.

Web application front-end design is a comprehensive process 
of structuring the user interface. It includes the design of the 
hierarchy of code, files, and folders, as well as the selection 
of appropriate platforms and libraries, which contributes to 
a structured and functional system.

The importance of a stable front-end architecture to a 
successful web application cannot be understated. It has a 
direct impact on how users interact with the website and 
how they perceive it. 

Creating an effective interface involves selecting appropriate 
frameworks and libraries, managing the state to keep 
information up-to-date, and structuring components for 
maintainability and scalability, and optimizing performance 
to improve the speed and functionality of the website.

In general, designing a front-end architecture requires 
thoughtful decisions and the use of effective techniques to 
create an aesthetically pleasing and consistently performing 
web application [1].

For developers whose goal is to continuously influence 
the industry, it is important to stay up-to-date with the 
latest programming languages, interface platforms, and 

technological innovations to maintain a competitive edge in 
a dynamic market [2].

Common Interface Architecture
The simplest and most common way to partition a frontend 
application nowadays can be roughly as represented in 
Figure 1.

Fig.1. The method of dividing a frontend application [3].



www.arjonline.org 12

Effectiveness of Different Approaches to Organizing Frontend Development

Initially, it may seem that the described architecture has 
no drawbacks. However, it reveals a typical problem: some 
elements of the architecture are too tightly integrated.

Consider a situation where Redux was used to manage state 
in the application, but then the team decides that Redux is 
too complex for current needs and wants to switch to another 
tool. This would require rewriting all the repositories and 
associated logic of the React components, which is a time-
consuming process due to the strong dependencies between 
layers.

This problem is not unique and affects all aspects of the 
application architecture. As a result, replacing even one part 
may not be possible without completely redesigning the 
entire system. It may be tempting to leave things as they are 
or even rewrite the application from scratch.

However, this is not the only possible approach. A properly 
designed modular architecture makes it possible to replace 
elements of the system, for example, to move from React + 
Redux to React + MobX, or even React + Vuex, or Vue + Redux 
without interfering with other parts of the application.

The obvious question that arises is “How do we achieve 
this flexibility?”. The main question is how to isolate the 
components of the application from each other so that 
changes in one part do not affect the functionality of the 
others. We present another approach (Fig.2.).

Fig.2. An example of a different approach to frontend 
development [3].

Layers in software architecture have the following 
characteristics:

Presentation layer: This layer primarily includes the user 
interface elements. Depending on the framework used, these 
could be Vue Single File Components (SFCs) for Vue, React 
components for React, or Svelte SFCs for Svelte. This layer 
interacts closely with the application layer.

Application Layer: This is where the application logic 
is centered. This layer interacts with the domain and 
infrastructure layers and is implemented, for example, using 
React Hooks in React or similar constructs in Vue 3.

Domain Layer: This layer is designed to implement domain 
or business logic. It contains solely business logic and is 
implemented in pure JavaScript or TypeScript without 
involving additional frameworks or libraries.

Infrastructure layer: This layer provides interaction with 
the outside world, including sending requests and receiving 
responses, as well as managing local data. Various libraries 
can be used to implement these functions, such as Axios or 
Fetch API for HTTP requests, and Vuex, Redux, MobX, or 
Valtio for application state management.

If this architecture is applied to an application, it will look 
like Figure 3.

Fig.3. An example of the application architecture [3].

The following characteristics are taken from the above 
architecture diagram:

When we replace the UI library/framework, only the 
presentation and application layers are affected.

At the infrastructure layer, we have a facade, so when 
replacing storage implementation details (e.g. replacing 
Redux with Vuex) it only affects the storage itself. The same 
goes for replacing Axios with Fetch API or vice versa. The 
application layer does not know the implementation details 
of the repository or the HTTP client. In other words, we have 
separated React from Redux/Vuex/MobX. The repository 
logic is also fairly universal, so it can be used not only with 
React but also with Vue or Svelte.

If the business logic changes, the subject matter layer will 
have to change accordingly, and this will affect other parts of 
the architecture.

What’s even more interesting about this architecture is that 
it can be further modularized:

However, even though the architecture can separate parts 
of the application from each other, there is a price to pay: 
increased complexity. So if working on a small application, 
this is not recommended [3].



www.arjonline.org 13

Effectiveness of Different Approaches to Organizing Frontend Development

Criteria for a good frontend architecture
In the initial development phase of an application, it is 
usually a compact and cleanly structured system without 
much complexity. However, over time, as the application 
evolves and expands, both the amount of code and the 
number of interrelationships between modules increases. 
If these processes are not controlled, the interrelationships 
can become so rigid and inflexible that even minor changes 
to the code become problematic. An example from practice, 
though not my personal one, shows a situation when due 
to rigid architecture developers had to rewrite a large part 
of the program just to change the organization of data in a 
table, which took more than a week with all the approvals 
taken into account.

To avoid such chaos in the code, pay attention to three key 
properties of a good architecture:

Usability. Developers should easily navigate the project 
structure and understand the interrelationships of its 
components. This will ensure comfortable and productive 
work, especially for front-enddevelopers.

Time-to-market (Time-to-market). It is ideal when this time 
is minimized, allowing updates to be released quickly. The 
reduction of development time depends on the organization 
of business processes in the company.

Scalability. As the company grows, attracts new customers, 
and adds functionality, the load on the application increases. 
It is important to lay down scalability from the very beginning 
to support sustainable development.

However, the first two criteria are affected not only by 
internal but also by external factors. For example, if business 
processes in the company are organized inefficiently, it will 
hinder the comfortable work of developers, even if there is a 
high-quality architecture, and will not allow to speed up the 
release of updates.

As an example from my experience, during the development 
of a large application, we used Gitflow, dividing tasks into two-
week sprints. This allowed us to make changes to the release 
branch steadily and without rushing. However, the business 
wanted to speed up the process, which led to the need to 
implement local releases, which significantly worsened the 
comfort and convenience of the developers’ work due to the 
need to rework already established processes. This example 
shows that the success of a project depends not only on its 
architecture but also on many external circumstances [4].

Steps in the development process
The first step starts with communication with the potential 
client, where the sales manager finds out the needs and 
specifications of the project. If the client’s needs are beyond 
the company’s competence, for example, a request for PWA 
development while specializing in mobile applications, the 
company may decide not to accept the order.

Next comes the research and planning of the project. In this 
phase, the team conducts research on the client’s business 
requirements and selects a suitable technology stack, 
keeping in mind scalability and future project needs. This 
research helps determine if the proposed solution fits both 
the client’s vision and budget.

The third step is the creation of wireframes and prototypes. 
Wireframes, or structural drawings of a web page, are 
created to visualize the layout of elements and functionality 
of a future product. They are a key tool in evaluating and 
detailing the design.

After the weirframes are approved, the design process 
begins, including the application of the client’s corporate 
style, color scheme and adaptive layout, which makes the 
site convenient for viewing on different devices.

The fifth stage is the development of the server part. At this 
stage the server part is installed and configured, for example, 
on the Drupal platform. Then the developers customize the 
necessary modules and perform the initial integration with 
the frontend. After that, frontend developers realize the 
visual aspects and interactivity of the site, ensuring its correct 
operation in different browsers and on different devices.

Next, testing and quality assurance needs to be done. And after 
testing is completed and all detected bugs are eliminated, the 
team makes final customizations and launches the product. 
The final stage includes training the client to manage the 
site, add content and other necessary operations. The team 
continues to maintain the site by resolving issues that arise 
and updating it [5].

The web application development process involves several 
stages, each of which is an important element in creating a 
successful product.

Evolution of web application rendering 
techniques
Traditional websites displayed on the server side represent 
one of the earliest types of web applications. They 
predominantly served to display static text and images with 
minimal interactivity. In such sites, HTML code, along with 
the necessary data, was generated by the server and sent 
back to the browser for display.

Each time the page was refreshed or navigated to another 
page, the server sent a new HTML code. This was repeated 
every time, except when the page was cached in the browser. 
This approach could slow down the loading of the site 
because the server was re-generating the HTML each time, 
even with minimal changes to the content.

Factors such as internet connection speed, server location, 
and the volume of simultaneous requests from users also 
affected site speed. While this wasn’t as critical for small 
sites, large modern sites with thousands of lines of code and 
complex logic suffered from latency.



www.arjonline.org 14

Effectiveness of Different Approaches to Organizing Frontend Development

However, the main advantage of server-side rendering is 
its compatibility with SEO, as content is indexed by search 
engines before the user gets it.

Modern single-page applications (SPAs) use client-side 
rendering. In a SPA, the browser loads the initial page along 
with all the necessary scripts, styles, and resources once. 
Transitions between pages occur without reloading, thanks 
to the HTML5 History API mechanism that updates the URL 
in the browser’s address bar.

The client side of SPA is developed independently, receiving 
data through the API. This separation allows the development 
of separate clients for different platforms, using different 
technology stacks, without changing the server side. This 
reduces the number of HTTP requests and reduces the size 
of the data transferred, speeding up processing.

Disadvantages of SPA include difficulties with SEO, as 
dynamically generated content is difficult for search engines 
to index. Large initial downloads can also slow down 
application response times, especially on devices with 
limited processing power.

In addition, when SPAs are developed by large teams, the 
diversity of approaches and solutions can complicate work 
consistency and code understanding. This requires additional 
effort to organize and maintain a clean codebase.

Isomorphic applications, or hybrid approaches, combine the 
benefits of server-side and client-side rendering to create 
web applications that load quickly and are well-optimized 
for search engines. These applications can run on both the 
client and server using common code, making them easy to 
develop and maintain.

On the first visit, the application is generated on the server 
using server-side rendering technologies such as Node.js 
and then passed to the browser. Then, as the user navigates 
through the application, subsequent pages are rendered 
on the client side using single-page application (SPA)-style 
JavaScript. This provides instant content updates via the API 
without the need for a full page reload.

One of the challenges of the isomorphic approach is 
managing the state between the server and the client. An 
effective solution is to create a state on the server, and then 
pass it to the browser, which uses that state to initially load 
the SPA. This reduces user wait time as the server page is 
displayed instantly and the dynamic client logic continues to 
run without delay.

To optimize, minimize the amount of content transferred 
on the first load by including only necessary elements such 
as inline CSS and minimal HTML. This speeds up the initial 
load, allowing a faster transition to client-side dynamic 
rendering.

The hybrid approach also solves routing issues by allowing 
server-side rendering for initial loading and client-side 
routing for internal navigation control. In this way, flexibility 

in loading application components can be achieved, which 
is important for maintaining high application performance 
when scaling.

However, isomorphic applications may face scalability issues 
when the number of users is large. Efficient caching on the 
server can minimize these issues, speeding up page display 
and improving overall performance.

Micro-frontend architecture, similar to microservices, aims 
to break monolithic applications into smaller, independently 
developed, and deployable components. This approach 
allows teams to develop and update different parts of the 
application independently, improving flexibility and speeding 
up development and deployment processes.

Application partitioning can be done either horizontally or 
vertically, depending on functional requirements and team 
structure. Each micro frontend can be designed for a specific 
business logic or user process, simplifying code management 
and maintenance.

Key aspects of micro-frontend architecture include 
component definition, micro-frontend composition, routing, 
and communication between them. This requires careful 
planning and coordination, as each component must 
integrate with the rest of the system while maintaining its 
independence.

In the context of horizontal architecture partitioning, web 
pages are decomposed into multiple micro-interfaces, 
each developed by different teams. This strategy improves 
flexibility, as individual micro-interfaces can be reused in 
different parts of the application. However, it also entails 
the need for tighter governance and coordination between 
teams to prevent unnecessary interface fragmentation.

In the case of vertical separation, different aspects or 
modules of the application, such as authentication, streaming 
services, or search functions, are developed by separate 
teams. This allows each team to specialize and optimize its 
segments without cross-dependencies with other parts of 
the application [6].

JAMStack (JavaScript, API, Markup) is a modern architectural 
practice that significantly improves the process of building 
websites and applications. This approach combines JavaScript, 
the use of APIs, and static markup to create dynamic websites 
that can be served without direct dependence on traditional 
web servers.

The result of a JAMStack implementation is a static artifact 
containing HTML, CSS, and JavaScript, the core components 
of web development. These resources can be efficiently 
hosted and delivered via content delivery networks (CDNs), 
significantly speeding up page loads and reducing the load 
on servers.

Key benefits of JAMStack include improved performance and 
lower infrastructure costs due to the ability to serve over 
CDNs. Also, the static nature of the files provides excellent 



www.arjonline.org 15

Effectiveness of Different Approaches to Organizing Frontend Development

scalability and increases security by reducing potential attack 
points. Integration with headless CMSs further simplifies 
content management and development [7].

Conclusion
The study emphasizes the importance of selecting the 
optimal architecture for front-end development, which 
directly impacts the success of web applications. The 
analyzed approaches demonstrate that there is no one-
size-fits-all solution: each project necessitates an individual 
approach based on its specifications and objectives. Modular 
architecture and the use of micro-frontends offer significant 
advantages in terms of management and scalability, while 
hybrid approaches optimize performance and enhance SEO.

For large and complex applications, developers should 
consider employing a micro-frontend architecture to 
improve maintainability and scalability. This approach 
allows different parts of the application to be developed 
and deployed independently, facilitating better modularity 
and team collaboration. To optimize performance and SEO, 
adopting hybrid approaches that combine server-side and 
client-side rendering is recommended. This method ensures 
quick initial load times and a seamless user experience, 
which are crucial for modern web applications.

It is crucial for the chosen architecture to be adaptable 
to evolving requirements and technological innovations. 
This flexibility will help maintain the competitiveness of 
web applications in a rapidly changing digital landscape. 
Implementing micro-frontend architecture requires 
meticulous planning and coordination among teams. 
Ensuring that each component integrates seamlessly with 
the rest of the system while maintaining its independence is 
essential for successful deployment.

Effective application of architectural solutions necessitates 
a profound understanding of both technical aspects and 
the business needs of the project. Adaptability to changing 

requirements and the ability to innovate are paramount 
for sustaining the competitiveness of web applications in a 
dynamic digital world.

References

Revolutionizing Web Experiences: 7 Powerful Frontend 1.	
Architecture Strategies For Unmatched Performance. 
[Electronic resource] Access mode: https://bitbytesoft.
com/web-experiences-with-frontend-architecture/ 
(accessed 8.05.2024).

Front-End Development Trends for 2024. [Electronic 2.	
resource] Access mode: https://www.dronahq.com/
front-end-development-trends / (accessed 8.05.2024).

A different approach to frontend architecture. [Electronic 3.	
resource] Access mode: https://dev.to/itswillt/a-
different-approach-to-frontend-architecture-38d4 
(accessed 8.05.2024).

Modern Frontend Architecture: A Guide to Key 4.	
Concepts. [Electronic resource] Access mode: https://
www.javacodegeeks.com/2024/04/modern-frontend-
architecture-a-guide-to-key-concepts.html (accessed 
8.05.2024).

Web development methodologies and approaches. 5.	
[Electronic resource] Access mode: https://www.
adcisolutions.com/knowledge/web-development-
methodologies-and-approaches (accessed 8.05.2024).

The frontend Landscape – Different Architectures. 6.	
[Electronic resource] Access mode: https://
learnersbucket.com/examples/web/the-frontend-
landscape-different-architectures/(accessed 8.05.2024).

The Front End Developer/Engineer Handbook 7.	
2024. [Electronic resource] Access mode: 
https://frontendmasters.com/guides/front-end-
handbook/2024 / (accessed 8.05.2024).

Citation: Nikhil Badwaik, “Effectiveness of Different Approaches to Organizing Frontend Development”, American 
Research Journal of Computer Science and Information Technology, Vol 7, no. 1, 2024, pp. 11-15.

Copyright © 2024 Nikhil Badwaik, This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited.


