
www.arjonline.org 28

American Research Journal of Computer Science and
Information Technology

Volume 7, Issue 1, 28-32 Pages
Research Article | Open Access
ISSN (Online)- 2572-2921
DOI : 10.21694/2572-2921.24006

Asynchronous Programming in Javascript: Modern
Approaches and Practice

Blahodelskyi Oleksandr Serhiyovych
Designer, MySteel BV, Gemert, Netherlands.

Abstract
This work is devoted to the study of asynchronous programming in JavaScript. The article discusses modern approaches
to the use of asynchrony in the development of web applications and practices in this area. Special attention is paid
to asynchronous operations, promises, event handling, and other mechanisms that allow you to work effectively with
asynchronous code. At the beginning of the work, the principles of asynchronous operations in JavaScript, their differences
from synchronous code, as well as the role of asynchrony in modern programming are considered. The existing practices
are analyzed and recommendations for users on the use of asynchronous programming to improve the performance and
responsiveness of applications are identified. The research in this article is based on current research and the experience
of developers, which makes it a valuable source of information for specialists interested in improving their skills in
asynchronous programming in JavaScript.

Keywords: asynchronous programming, promises, web applications, async/await, callback.

Introduction
In today's world, asynchronous programming has become an integral part of web application development, especially in
JavaScript. The relevance of this topic is due to the fact that almost all useful JS programs are written using asynchronous
development methods. To understand the importance of the asynchronous approach, it is essential to grasp the fundamental
differences between synchronous and asynchronous code, along with their advantages and disadvantages.

Synchronous code implies a pipeline nature where the execution of subsequent parts is delayed until the previous part
completes, thus executing code sequentially, line by line. This method is suitable for performing the simplest and most
primitive tasks where the speed of operation is not critical. Consequently, synchronous programming is not ideal for
working with large files or making server requests where high application responsiveness is crucial. In synchronous code,
if one of the operations takes a long time, the entire workflow will be paused until it completes, leading to low application
responsiveness.

Fig. 1. Schematic comparison of synchronous and asynchronous approaches.

www.arjonline.org 29

Asynchronous Programming in Javascript: Modern Approaches and Practice

In asynchronous code, operations can be performed
simultaneously without blocking the rest of the program,
differing from the synchronous approach. This is particularly
useful for time-consuming operations, such as network
requests or input-output operations. Asynchronous
programming allows such operations to run while continuing
to execute other tasks until the initial operation completes.

In the modern IT sphere, JavaScript is used for developing
and maintaining user web applications where interface
responsiveness is crucial [1]. The practice of asynchronous
programming enables operations to run in parallel, avoiding
the blockage of the main function of the application.
Asynchronous programming is indispensable when working
with server requests, as the speed of operations increases
the application's throughput.

Evolution of Asynchronous Methods
and Modern Approaches to Their
Implementation
Over the past decade, asynchronous programming in
JavaScript has exhibited significant diversity. From basic
callbacks to the use of promises and the async/await
constructs, each of these tools was created to address specific
challenges [6].

Callback

Callbacks represent a fundamental approach to asynchronous
programming in JavaScript. A callback is a function that is
passed to another function as an argument and is executed
after the completion of an asynchronous operation [4].
This method allows certain actions to be performed after
the operation finishes without blocking the main execution
thread.

Server requests, events, and timers are all asynchronous
operations that utilize callbacks for effective operation.

Table 1. Analysis of the Advantages and Disadvantages of
Callbacks

Advantages Disadvantages
Simplicity: callbacks are
easy to learn and easy to
use.

Callback Hell: If more callbacks
are applied, the code may break or
become hard to read for the user.

Flexibility: Callbacks are
used in a wide variety of
situations, from complex
requests to the server to
simple timers.

Errors and debugging: Sometimes
there are difficulties with error
handling in callback functions,
especially in case of complex
asynchronous operations.

The main issue with using callbacks in modern asynchronous
programming is known as “Callback Hell” or the “Pyramid of
Doom.” This phenomenon occurs when there is an excessive
layering of nested callbacks, making the code difficult to
read, debug, and maintain.

Promises

The use of promises marked an important step in the
evolution of asynchronous programming in JavaScript,

providing a more convenient and structured approach to
managing asynchronous operations compared to callbacks. A
promise is an object that represents the eventual completion
(or failure) of an asynchronous operation [2]. The Promise
constructor is used to create a promise, which accepts a
function with two parameters: resolve and reject. These
parameters are used to conclude the promise successfully or
with an error, respectively.

Example of a promise:

let promise = new Promise(function(resolve, reject) {
 // Asynchronous operation
 if (/* success */) {
 resolve(result);
 } else {
 reject(error);
 }
});

Async/Await
The introduction of the async and await keywords in
JavaScript significantly simplified working with asynchronous
code, making it more understandable and readable [3, 7].
This approach allows writing asynchronous code that looks
and behaves like synchronous code, improving the overall
program structure.

The async keyword is used to declare a function as
asynchronous. Such a function always returns a promise. If
the function returns a value, it is automatically wrapped in a
promise that resolves with that value. If an error occurs, the
function returns a promise that rejects with that error.

Example of async function:

async function fetchData() {
 return “Data”;
}

The await keyword is used inside asynchronous functions
to wait for the completion of a promise [7]. When awaiting
a promise, the execution of the function is paused and then
resumed after the promise is resolved or rejected, returning
the result of the operation as the promise’s value. If the
promise is rejected, await throws an exception that can be
handled using a try/catch block.

Example of using async/await:

async function fetchData() {
 try {
 let response = await fetch(‘https://api.example.com/
data’);
 let data = await response.json();
 return data;
 } catch (error) {
 console.error(‘Error:’, error);
 }
}

www.arjonline.org 30

Asynchronous Programming in Javascript: Modern Approaches and Practice

Fig. 2. Various Ways of Working with Asynchrony

This diagram shows different ways of working with
asynchronous code. The colored blocks pertain to
asynchronous programming, while the black-and-white
blocks represent methods of parallel programming and Petri
nets, which, like asynchronous programming and the actor
model, represent different approaches to parallel computing.
Events and concurrent queues are connected to callbacks
through dashed lines because these concepts are based on
the use of callbacks, although they represent significantly
newer methods of operation.

Practices of Asynchronous Code
1) Error Handling with try/catch

In asynchronous programming, proper error handling is
particularly important. Consider the example of using the
try/catch construct:

async function fetchUserData(userId) {
 try {
 const response = await fetch(`https://api.example.com/
users/${userId}`);
 if (!response.ok) {
 throw new Error(`HTTP error! status: ${response.
status}`);
 }
 const userData = await response.json();
 return userData;
 } catch (error) {
 console.error(`Error fetching user data: ${error.
message}`);
 throw error; // Throw the error for processing at a higher
level
 }
}

This approach allows localizing error handling directly

where the errors occur, facilitating more effective debugging
and code maintenance.

2) Breaking Down Asynchronous Logic into Small Functions

Decomposing complex asynchronous operations into simpler
functions improves code readability and testability:

async function getUserProfile(userId) {
 const userData = await fetchUserData(userId);
 const userPosts = await fetchUserPosts(userId);
 return {
 ...userData,
 posts: userPosts
 };
}
async function fetchUserData(userId) {
 // Realization of user data request
}
async function fetchUserPosts(userId) {
 // Implementation of querying user’s posts
}

This division makes understanding the program logic easier
and simplifies unit testing of individual components.

3) Using Promise.all for Parallel Execution of Tasks

To optimize performance when dealing with multiple
asynchronous operations, it is advisable to use the Promise.
all method:

async function fetchMultipleUserProfiles(userIds) {
 const profilePromises = userIds.map(userId =>
getUserProfile(userId));
 return await Promise.all(profilePromises);
}

This method allows several asynchronous operations to be

www.arjonline.org 31

Asynchronous Programming in Javascript: Modern Approaches and Practice

executed in parallel, significantly reducing the total execution
time.

4) Documenting Asynchronous Functions

High-quality documentation is critical for code maintenance
and development. Example of documenting an asynchronous
function:

/**
 * Asynchronously retrieves a user’s profile.
 * @param {number} userId - User ID.
 * @returns {Promise<Object>} An object that contains
user profile data.
 * @throws {Error} If an error occurs while receiving data.
 */
async function getUserProfile(userId) {
 // Function realization
}

This approach to documentation facilitates understanding
the purpose of the function, its parameters, and return
values.

5) Choosing an Asynchronous Programming Approach

In modern development, the most common methods are
promises and async/await. Comparing their usage:

// Use of promises
function fetchDataPromise() {
 return fetch(‘https://api.example.com/data’)
 .then(response => response.json())
 .catch(error => console.error(‘Error:’, error));
}

// Using async/await
async function fetchDataAsync() {
 try {
 const response = await fetch(‘https://api.example.com/
data’);
 return await response.json();
 } catch (error) {
 console.error(‘Error:’, error);
 }
}

The choice between these approaches depends on the
specific project requirements and the developer’s personal
preferences. Async/await provides more linear and readable
code, especially in complex asynchronous scenarios.

The presented examples demonstrate key aspects of modern
asynchronous programming in JavaScript, ensuring code
efficiency, readability, and reliability [5].

Conclusion

Modern web development in JavaScript requires developers
to have a deep understanding of asynchronous programming
and the ability to effectively apply its principles. Based
on the studied principles, developers can create more
reliable, scalable, and high-performance web applications.
It is important to properly structure the code, optimize
data processing, and ensure the seamless operation of the
application.

Asynchronous programming in JavaScript plays a crucial
role in modern web development, allowing the creation
of dynamic and interactive applications. By following best
practices, using modern tools, and continually improving
their skills, developers can achieve success and create high-
quality software products.

While working on this scientific article, it became evident
that the topic of asynchronous programming in JavaScript
is so vast and multifaceted that it deserves a more in-depth
and detailed examination. This realization led to the idea
of creating a full-fledged book dedicated to this topic. This
article served as a starting point for this larger project, laying
the foundation for further research and analysis of modern
approaches to asynchronous programming in the context of
web development.

The planned book aims to provide developers with a
comprehensive guide to the effective use of asynchronous
techniques in JavaScript, covering both fundamental concepts
and advanced strategies for their application in real-world
projects. It will serve as a logical continuation and expansion
of the ideas presented in this article, offering readers an
in-depth understanding of this critically important area of
modern programming.

References

Simpson K. You Don't Know JS Yet: Scope & Closures. 1.	
2020. Available from: https://github.com/getify/You-
Dont-Know-JS

CSS-Tricks. Understanding JavaScript’s async await. 2020. 2.	
Available from: https://css-tricks.com/understanding-
async-await/

Tominaga E., Arahori Y., Gondow K. AwaitViz: a 3.	
visualizer of JavaScript's async/await execution order
//Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing. – 2019. – pp. 2515-2524.

Udemy. Asynchronous JavaScript: Promises, Callbacks, 4.	
Async/Await. 2021. Available from: https://www.
udemy.com/course/asynchronous-javascript-promises-
callbacks-async-await/

Coursera. JavaScript, jQuery, and JSON. 2020. Available 5.	
from: https://www.coursera.org/learn/javascript-
jquery-json

www.arjonline.org 32

Asynchronous Programming in Javascript: Modern Approaches and Practice

Flanagan D. JavaScript: The Definitive Guide, 7th Edition. 6.	
2020.

Medium. JavaScript Async/Await: Making Asynchronous 7.	
Programming Simpler. 2021. Available from: https://

medium.com/javascript-in-plain-english/javascript-
async-await-making-asynchronous-programming-
simpler-7a8b0c7d64f7

Citation: Blahodelskyi Oleksandr Serhiyovych, “Asynchronous Programming in Javascript: Modern Approaches and
Practice”, American Research Journal of Computer Science and Information Technology, Vol 7, no. 1, 2024, pp. 28-32.

Copyright © 2024 Blahodelskyi Oleksandr Serhiyovych, This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

