
www.arjonline.org 37

American Research Journal of Computer Science and
Information Technology

Volume 7, Issue 1, 37-41 Pages
Research Article | Open Access
ISSN (Online)- 2572-2921
DOI : 10.21694/2572-2921.24009

Methods of Protection Against XSS Attacks at the Client Side Level
Okhonko Pylyp

Application Security Engineer, Tential, Rockville, Maryland, United States.

Abstract
Protection methods against XSS attacks on the client side are key approaches to ensuring the security of web applications
that prevent the introduction and execution of malicious code in users’ browsers. The main methods include data validation
and filtering, using the Content Security Policy (CSP) protocol, encoding user input, as well as using mechanisms to detect
and prevent the execution of suspicious scripts. These measures are aimed at reducing the risks of both reflected and
persistent XSS attacks, providing a higher level of protection for confidential information. Special attention is paid to an
integrated approach that includes the interaction of server and client protection methods, which minimizes vulnerabilities
and increases the resistance of web applications to various types of attacks.

Keywords: XSS attacks, data validation, data filtering, Content Security Policy, data encoding, web application
protection, browser security, attack prevention.

Introduction
With the development of web technologies and the
widespread use of web applications, information security
issues are becoming increasingly relevant. One of the most
common threats faced by modern web applications is
cross-site scripting (XSS attacks). XSS attacks are a type of
vulnerability that allows attackers to inject malicious scripts
into web pages, which are then executed on the client side.
These attacks can lead to serious consequences, such as the
theft of confidential data, user account compromise, and the
execution of arbitrary code in the browser.

The relevance of this topic is driven by the growing
complexity and diversity of modern web applications, as well
as the increasing number of cyberattacks aimed at exploiting
XSS vulnerabilities. Despite the advancement of protection
methods, XSS attacks continue to pose a serious security
threat, necessitating the development and implementation
of reliable client-side protection methods. This is especially
important as attacks become more sophisticated, and the
consequences of their successful execution can be extremely
destructive.

The aim of this paper is to analyze existing methods of
protection against XSS attacks at the client-side level and
identify the most effective approaches to ensuring the
security of web applications.

XSS Attacks: Definition and Types
Cross-site scripting (XSS) is an internet security threat that

occurs when malicious JavaScript code is injected into input
fields and subsequently executed on the side of other users.
This can lead to the theft of session data or redirection to
phishing websites. One of the key protection mechanisms
is the principle of domain interaction restriction. Web
scripts operating within a single site can function without
limitations, but their impact is confined to that domain
and does not extend to other resources [1]. Reflected XSS
attacks occur when the data entered by a user is immediately
returned to them on the same page. An example would be a
search bar that displays results based on the user’s query.
An attacker could create a malicious search query containing
JavaScript code, which would execute when the search results
are displayed, leading to the execution of harmful code in the
user’s browser [2].

There are three main types of XSS attacks: stored, reflected,
and DOM-based attacks. Although there are more types,
these three are the most common and deserve detailed
consideration.

Stored XSS occurs when a malicious script is saved in the
application’s database and then executed when the page
is generated for the client. An example might be an online
store where users can leave reviews. If developers have
not implemented adequate data filtering, an attacker could
embed a script in a review, and anyone who opens the page
with that review would be subjected to the attack.

Reflected XSS does not require the script to be stored on
the application server. Here, the attack occurs via a URL

www.arjonline.org 38

Methods of Protection Against XSS Attacks at the Client Side Level

containing malicious code, which is sent to the server
and returned in the response. The script then executes on
the client side. This type of attack requires the attacker to
individually target each user by sending them a specially
crafted link.

DOM-based XSS is characterized by the script being injected
into the DOM structure of the page on the client side when
JavaScript processes data passed in the URL. Unlike other
types of XSS, in this case, the HTML returned from the server
is safe, but the script is activated during the data processing
phase in the browser.

In addition to the above, there are other, less common types
of XSS attacks. For instance, mutating XSS (mXSS) exploits
the way browsers clean and process user data. Blind XSS
takes advantage of vulnerabilities in an application where the
script is triggered later and may affect another application or
system. Self-XSS is an attack where the user enters malicious
code into the web application interface themselves, falling
prey to social engineering tactics. These types of attacks
highlight the importance of continually improving security
measures and awareness of various vulnerabilities, even if
they are less common [3].

Reflected XSS is also one of the types of XSS attacks, where
the malicious script is not stored on the application’s servers
but is delivered to the victim through a link. This process is
implemented via a URL containing malicious code, which the
server displays on the web page generated for the user. As a
result, the user sees a page with a script already embedded
in it, which executes on the client side. Unlike stored XSS
vulnerabilities, reflected attacks only affect users who follow
specially crafted links. This vulnerability is more prone to
detection at the Web Application Firewall level since the
malicious code is transmitted in the URL, which is logged
everywhere. Thus, a victim can be targeted without even
realizing it.

Data Validation and Filtering on the Client
Side
To ensure the security of frontend applications,
comprehensive measures must be taken to minimize risks
and vulnerabilities. However, it is important to understand
that security is not a final goal but an ongoing process that
requires regular monitoring and adaptation depending on
the project’s context.

Data recording should be done using encoding immediately
before storing information obtained from the user on the web
page. This is necessary because the choice of the appropriate
encoding type depends on the context in which the recording
occurs. For example, embedding values in JavaScript requires
one type of escaping, while HTML requires a different
approach.

Data validation is the process of checking the correctness
and security of information entered by the user. If a web page
lacks a validation mechanism, users can enter incorrect or
incomplete data, which may complicate further processing
and create a security threat.

Client-side validation occurs before the form is submitted
to the server. It allows the user to promptly correct errors
that may arise when filling out fields. For example, input data
can be checked against specific criteria, such as the format
of an email address or phone number. HTML attributes can
be used to set rules for each input field. For instance, the
type attribute specifies the type of data being entered, while
required makes the field mandatory. The pattern attribute
allows for the use of regular expressions to validate data,
such as a phone number.

Despite the usefulness of client-side validation, relying on
it alone is not advisable, as JavaScript code may fail to load
due to internet connection issues or other factors. In such
cases, HTML attributes play an important role in preventing
incorrect data entry.

Server-side validation occurs after data is submitted. This
method is more reliable because it does not depend on the
client device and can detect errors that may be missed on the
client side. Server-side validation is typically implemented
using programming languages like PHP, Python, or Java.
The main stages include receiving the data, checking it
against established rules, and then processing the valid
data, including storing it in a database or using it in further
operations.

It is important to note that server-side validation also plays
a key role in ensuring security by preventing XSS attacks
through escaping user input [4].

When working with HTML content, any values not included
in the approved list must be converted into HTML entities:

- The “<” symbol should be replaced with: `<`

- The “>” symbol should be replaced with: `>`

For data placed in a JavaScript string, non-alphanumeric
characters should be converted to Unicode format:

- The “<” symbol should be replaced with: `\u003c`

- The “>” symbol should be replaced with: `\u003e`

Sometimes it may be necessary to use multiple levels of
encoding, and this must be done in a specific sequence.
For example, if you need to safely embed user input into an
event handler, both JavaScript and HTML contexts must be
considered. In this case, the input should first be converted
to Unicode format, and then to HTML entities.

Data encoding is a critically important tool for protecting
against XSS attacks, but it does not provide full security
in every context. In addition to this, strict input validation
should be carried out when data is received from the user.

Examples of input validation include:

- Ensuring that a URL provided by the user begins with a
secure protocol, such as HTTP or HTTPS. This prevents the
use of unsafe protocols like `javascript:` or `data:`.

- Checking that numerical values match the expected data type,
for instance, ensuring that the provided value is an integer.

www.arjonline.org 39

Methods of Protection Against XSS Attacks at the Client Side Level

- Restricting input to allowed characters only.

The ideal approach is to block invalid input, while attempts
to clean incorrect input to make it valid often lead to errors
and should only be used as a last resort.

Modern web applications often use server-side templating
engines, such as Twig, Blade, or Freemarker, to embed
dynamic content into HTML. These engines typically have
built-in methods for escaping data. For example, Twig uses
the `e()` filter with an argument that defines the context:

{{ user.firstname | e(‘html’) }}

Some templating engines, such as Jinja or React, by default
prevent the execution of dynamic content, significantly
reducing the risk of XSS attacks.

Before using a templating engine, it is important to carefully
review its data-escaping capabilities. It is crucial to remember
that if user input is directly inserted into template strings,
it can lead to server-side template injection, which is often
more dangerous than XSS.

PHP provides a built-in `htmlentities` function designed for
encoding entities. This function should be used to escape user
input in the context of HTML. It requires three arguments:
the input string, the `ENT_QUOTES` flag, which indicates
the need to encode all quotes, and the character set, usually
UTF-8.

Example usage:

<?php echo htmlentities($input, ENT_QUOTES, ‘UTF-8’);?>

For the context of JavaScript strings in PHP, Unicode format
escaping must be used. Although PHP does not have a built-
in API for this, a custom function can be implemented:

<?php
function jsEscape($str) {
 $output = ‘’;
 $str = str_split($str);
 for($i=0; $i<count($str); $i++) {
 $chrNum = ord($str[$i]);
 $chr = $str[$i];
 switch($chr) {
 case “’”:
 case ‘”’:
 case “\n”;
 case “\r”;
 case “&”;
 case “\\”;
 case “<”:
 case “>”:
 $output .= sprintf(“\\u%04x”, $chrNum);
 break;
 default:
 $output .= $str[$i];
 break;
 }
 }
 return $output;
}
?>

This function can be used to escape a string before it is used
in JavaScript:

<script>x = ‘<?php echo jsEscape($_GET[‘x’])?>’;</script>

An alternative is to use a server-side templating engine. For
safe data escaping in the context of HTML within JavaScript,
a custom HTML encoder is required, as JavaScript does not
provide built-in tools for this. Here is an example of a function
that converts a string into HTML entities:

function htmlEncode(str) {
 return String(str).replace(/[^\w.]/gi, function(c) {
 return ‘&#’ + c.charCodeAt(0) + ‘;’;
 });
}

This function can be applied to escape data before rendering
it. If user input is used inside a JavaScript string, Unicode
escaping must be performed:

<script>document.body.innerHTML =
htmlEncode(untrustedValue)</script>
function jsEscape(str) {
 return String(str).replace(/[^\w.]/gi, function(c) {
 return ‘\\u’ + (‘0000’ + c.charCodeAt(0).toString(16)).
slice(-4);
 });
}

An example usage of this function [5]:

<script>document.write(‘<script>x=”’+jsEscape(untrusted
Value)+’”;<\/script>’)</script>

To ensure the security of data input in an application, careful
validation of input data must be implemented. The primary
goal of such validation is to prevent injection attacks,
where attackers may insert malicious code by exploiting
vulnerabilities in input fields.

Maintaining up-to-date project dependencies is an important
aspect of ensuring security. Outdated libraries may contain
vulnerabilities that attackers can exploit to inject malicious
code or carry out other attacks, such as denial of service.
Regular updates and vulnerability checks for packages help
reduce risks and protect the application from potential
threats [6].

Thus, creating a secure frontend application requires a
comprehensive approach that includes the use of proven
encryption methods, thorough data validation, proper
security policy configuration, and continuous updating of
dependencies. Only such an approach can provide reliable
protection against various types of attacks and minimize
potential risks.

Use of Content Security Policy (CSP)
The Content Security Policy (CSP) concept is a standard
developed by the W3C consortium aimed at reducing the
risks of injection attacks, such as XSS. CSP gives developers
the ability to control which resources can be loaded and

www.arjonline.org 40

Methods of Protection Against XSS Attacks at the Client Side Level

executed on a web page, thereby minimizing potential
threats. This technology allows the establishment of
rules governing the loading of resources (such as images,
JavaScript, fonts, etc.) in the user’s browser. These rules
can permit or restrict the loading of specific resources, set
conditions for resources from certain domains, and block
loading from other sources.

For example, it is possible to configure a policy so that
browsers only load images from the domain example.com,
ignoring all other sources. This is particularly important
when ensuring the security of web applications by preventing
the loading of unverified or potentially malicious data.

CSP can be implemented via HTTP headers or using META
tags. HTTP headers include directives that define where
different types of resources can be loaded from. Examples
of such directives include `default-src`, which sets general
loading rules, and `script-src`, which restricts JavaScript
loading sources. Directives can be combined to create more
complex policies. For instance, the command `Content-
Security-Policy: default-src ‘self ’; img-src example.com;`
will allow any resources to be loaded only from the current
domain, while images can only be loaded from example.
com.

CSP also supports a reporting mechanism that logs violations
of the established policies. This is achieved using the ̀ report-
uri` directive, which sends violation data to a specified server.
If violations are detected, the information is transmitted in
JSON format.

Before implementing CSP, it is important to carefully analyze
all the resources required for the proper functioning of your
web application. Incorrectly configured policies can block
critical components of the site, leading to system errors. If
there is uncertainty about the necessary set of resources,
CSP can be activated in report-only mode. In this mode,
violations will be logged, but resources will not be blocked,
allowing you to refine the policy before fully enforcing it [7].

One approach to implementing CSP involves using the
`Content-Security-Policy` header, which allows strict rules
to be set for acceptable content on web pages. In modern
applications, developers can define the security policy
header at the application code level, allowing greater control
and flexibility in ensuring security. Developers can directly
implement CSP in the application to protect against attacks
such as cross-site scripting (XSS). It is essential to test and
monitor the effectiveness of these policies to avoid potential
disruptions to site functionality [8].

Detection and Prevention of Suspicious
Script Execution

To enhance the protection of web applications, it is
recommended to use Content Security Policy (CSP), which
restricts the browser from loading resources from untrusted

sources. This significantly reduces the risk of successful XSS
attacks, even if there are vulnerabilities in the site’s code.
The `report-uri` directive is a mechanism for transmitting
data on security policy violations. When deviations from the
established security rules are detected, the browser sends
reports with information about the violation in JSON format
to a specified server, the address of which is indicated in the
content security policy. This can be any local or external URI,
for example:

Content-Security-Policy-Report-Only: default-src ‘self ’; ...;
report-uri /your_csp_report_parser;

It is worth noting that it is possible to use both the `Content-
Security-Policy-Report-Only` and `Content-Security-Policy`
headers simultaneously to test new security rules while still
applying the existing policy. After the new policy is activated,
the `report-uri` directive can continue to be used to receive
detailed reports on detected violations. This ensures effective
monitoring and analysis of policy enforcement without fully
restricting actions, which is especially useful during the
testing phase. Each JSON report starts with the `csp-report`
attribute and looks like this:

{
 “csp-report”: {
 “document-uri”: “http://netsparker.com/index.html”,
 “referrer”: “http://nasty.example.com/”,
 “blocked-uri”: “http://nasty.example.com/nasty.js”,
 “violated-directive”: “script-src ‘self ’ https://apis.google.
com”,
 “original-policy”: “script-src ‘self ’ https://apis.google.
com; report-uri http://netsparker.com/your_csp_report_
parser”
 }
}

As you can see, the reports contain detailed information
about each case of policy violation, including the blocked
URI and the corresponding directive that was violated. This
greatly simplifies the process of diagnosing and resolving
issues, especially when the security policy includes numerous
directives and parameters. This approach allows for the quick
identification and correction of shortcomings, improving the
overall efficiency of working with security policies [9].

Conclusion
In conclusion, it should be emphasized that effective
protection against XSS attacks on the client side requires
the application of a range of methods that complement each
other, creating a robust security system for web applications.
Data validation and filtering, proper encoding of user input,
configuring Content Security Policy (CSP), and using modern
tools for detecting and preventing the execution of malicious
code are all critically important for safeguarding users’
confidential information. However, despite all efforts to
secure the client side, server-side security measures must
not be overlooked, as only a comprehensive approach can
provide maximum protection against XSS attacks.

www.arjonline.org 41

Methods of Protection Against XSS Attacks at the Client Side Level

References
Pronina D. A., Loginova I. M., Eshelioglu R. I. Cross-site 1.	
scripting or XSS attack //Scientific research of young
scientists. - 2022. – pp. 246-250.

Weamie S. J. Y. Cross-site scripting attacks and defensive 2.	
techniques: A comprehensive survey //International
Journal of Communications, Network and System
Sciences. – 2022. – Vol. 15. – No. 8. – pp. 126-148.

Krylov I. D. Effective ways to detect and prevent XSS 3.	
vulnerabilities of sites //StudNet. - 2021. – Vol. 4. – No.
2.

Filatova D. K., Treshchev I. A., Karpova N. G. Approaches 4.	
to the analysis of XSS vulnerabilities on web resources
based on Google’s XSS Game //Science, innovation and
technology: from ideas to implementation. – 2022. – pp.
156-159.

Konkin A. A., Treshchev I. A. Effective ways to prevent XSS 5.	
vulnerabilities in web applications //science, innovations
and technologies: from ideas to implementation. – 2022.
– pp. 115-117.

Petrovskaya A. S. Methods of recognizing and preventing 6.	
phishing attacks //Electronic collection of works by
young specialists of Polotsk State University named after
Euphrosyne of Polotsk. Legal sciences. – 2021. – No. 37.
– pp. 227-230.

Voloshko M. Yu., Kulikova N. N. Cross-site scripting (XSS). 7.	
methods and methods of protecting Web systems //
problems of effective use of the scientific potential of
society. - 2021. – pp. 99-101.

Applying the Content Security Policy for ASP.NET Core 8.	
Blazor. [Electronic resource] Access mode: https://learn.
microsoft.com/ru-ru/aspnet/core/blazor/security/
content-security-policy ?view=aspnetcore-8.0 (accessed
08/31/2024).

Modern feedback from web systems: we configure the 9.	
report-uri. [Electronic resource] Access mode: https://
www.atraining.ru/report-uri-settings / (accessed
12.09.2024).

Citation: Okhonko Pylyp, “Methods of Protection Against XSS Attacks at the Client Side Level”, American Research
Journal of Computer Science and Information Technology, Vol 7, no. 1, 2024, pp. 37-41.

Copyright © 2024 Okhonko Pylyp, This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

