
www.arjonline.org | 24

American Research Journal of Computer Science and Information Technology

Volume 8, Issue 1, 24-30 Pages
Research Article | Open Access
ISSN (Online)- 2572-2921
DOI : 10.21694/2572-2921.25005

Architectural Approaches to Building Real-Time Web
Applications Based on WebSockets, SSE, and WebRTC

Andrei Chmelev
Senior Software Engineer, Lowe’s Indian Trail, NC 28079, US.

Abstract
This article reviews contemporary architectural approaches to building real-time web applications that require instant
data updates. It highlights a comparative analysis of key technologies—WebSockets, Server-Sent Events (SSE), and
WebRTC—providing guidance on selecting the most suitable solution for scenarios such as chat systems, online editors,
and multiplayer games. In addition, it explores strategies for scaling and load balancing real-time connections, as well as
mechanisms to ensure reliable data delivery. Typical architectures—such as Node.js with Redis Pub/Sub or Kafka—are
presented, along with recommended methods for monitoring and logging real-time data streams. Code snippets illustrate
practical implementation techniques to help developers create robust and efficient real-time features within various
infrastructures.

Keywords: real-time web applications, websockets, server-sent events, webrtc, scalability, load balancing, reliability,
pub/sub, monitoring, logging

Introduction
The development of network technologies and the growing
demands of users for interactivity make the implementation
of real-time data update mechanisms critically important
for web applications. Chats, online document editors,
notification systems, and multiplayer games all require
effective approaches to real-time message exchange. Modern
protocols and tools such as WebSockets [1], Server-Sent
Events (SSE) [2], and WebRTC [3] allow developers to choose
the optimal solution depending on the use case—whether
two-way communication, media (audio/video) transmission,
or broadcast notifications are required.

In addition to choosing the main communication protocol,
it is now extremely important to design mechanisms for
scaling and load balancing of real-time connections under
high loads, as well as to ensure reliable data delivery. For
this purpose, message brokers (Redis Pub/Sub [4], Kafka
[5]) and various fault-tolerance approaches (ACK/Retry,
idempotency, etc.) are widely used. Monitoring and logging
tools (Prometheus [9], Grafana [10], and distributed tracing
systems [11,12]) have also become essential, enabling timely
detection of issues and effective management of complex
microservice architectures.

Research Objectives
The goal of this article is to systematize knowledge about
modern methods and tools for creating real-time web
applications. In particular, it addresses the following tasks:

Comparative analysis of key protocols: Determine under 1.	
which conditions WebSockets, SSE, and WebRTC are most
effective, as well as their advantages and limitations.

Scaling and load balancing strategies: Describe 2.	
approaches to horizontal scaling, including sticky
sessions, decentralized state storage, and the use of
message brokers.

Reliable delivery mechanisms: Examine practical 3.	
methods for ensuring guaranteed message delivery,
including Pub/Sub patterns, acknowledgments (ACK),
retries, and idempotency.

Practical examples and recommendations: Demonstrate 4.	
through specific code snippets and diagrams how
these solutions can be implemented in real-world
infrastructures, as well as how to configure monitoring
and logging.

Research methodology

In this work, a review-analytical approach with elements
of comparative analysis of key technologies for creating
real-time web applications was applied. The methodology
included several stages.

At the first stage, the official standards for WebSockets, 1.	
SSE, and WebRTC were analyzed, as well as
documentation for Redis and Kafka. Their technical
capabilities, limitations, and main usage scenarios were
studied.

www.arjonline.org | 25

Architectural Approaches to Building Real-Time Web Applications Based on WebSockets, SSE, and
WebRTC

For the comparative analysis, data from open tests and 2.	
architectural recommendations were collected, taking
into account interaction models, scaling (sticky sessions,
NAT, SFU/MCU), and various types of loads.

Additionally, practical cases based on Node.js, Redis 3.	
Pub/Sub, Kafka, and monitoring systems (Prometheus,
Grafana, Jaeger, OpenTelemetry) were considered.
Real solutions were examined to identify typical
bottlenecks and to test the effectiveness of the proposed
approaches.

At the final stage, recommendations were formulated on 4.	
the choice of technologies, the setup of horizontal scaling,
and ensuring reliable delivery (Pub/Sub, ACK, retries,
idempotency). All findings were based on comparing
theoretical data with practical observations.

Combining these steps made it possible to substantiate the

solutions under consideration and to provide a holistic view
of the design and operation of real-time web applications in
distributed systems.

Technologies for two-way communication in web
applications

In the modern web, three approaches are widely used to
implement real-time functionality: WebSockets, Server-
Sent Events (SSE), and WebRTC. Each one addresses specific
tasks — from full-fledged two-way message exchange to
transmitting audio and video streams directly between
browsers. The particular choice depends on the scenario
(chats, online games, collaborative editors, video conferences)
and infrastructure features (load balancing, presence of
proxy servers, NAT traversal support, etc.). A comparative
analysis of the key characteristics and applicability of these
technologies is presented in Table 1.

Table 1. Comparative overview of WebSockets, SSE, and WebRTC

Criterion WebSockets SSE (Server-Sent Events) WebRTC

Type of
connection

Full-fledged two-way
connection (full-duplex)
after HTTP Upgrade

One-way data stream server →
client, uses text/event-stream

P2P connection between clients (with
possible involvement of STUN/TURN
servers)

Use cases Chats, online games, real-
time notification systems,
financial exchanges

News feeds, notifications, chats
with infrequent client-to-server
data, monitoring

Audio/video conferences, direct file
exchanges, interactive streams (voice,
video)

Advantages - Asynchronous full-duplex
exchange- Minimal latency
- Broad browser support

- Simplicity of implementation
and deployment
- Works over regular HTTP/2-
Automatic “reconnect”

- Reduces server load, data goes
“client-to-client”- Supports audio,
video, file sharing

Drawbacks - Requires special attention
to load balancing (sticky
sessions)
- Can cause proxying
difficulties

- One-way (can’t send data from
client to server through the same
channel)
- Less efficient for large-scale
broadcasting

- Complex NAT traversal setup (STUN/
TURN)- For large broadcasts, server
components (SFU/MCU) are still
needed

Scaling features - Need to ensure the
connection is tied to a
specific server or use a
distributed cache

- Possible to use CDN/edge
servers for SSE retransmission-
Straightforward “horizontal”
scaling with proper configuration

- Need to scale the TURN server
(when many peers are behind NAT)
- Large projects often introduce SFU/
MCU

WebSockets are convenient for two-way transmission of
small messages in real time (e.g., in chats), SSE is well suited
for simple “push” notifications from the server to the client,
and WebRTC solves the problem of direct audio and video
transmission without heavy server load.

Typical architectures and reliability mechanisms

This section describes the most common approaches to
organizing and scaling real-time applications, as well as
mechanisms for improving the reliability of message delivery.
In practice, multiple technologies are often combined — for
example, Node.js + Redis for real-time broadcasting (Pub/

Sub), Kafka for guaranteed delivery and event analysis
(event streaming), and advanced ACK/Retry mechanisms
with idempotency. A comparative analysis of the presented
solutions is provided in Table 2.

Node.js + Redis Pub/Sub

One of the common solutions is to use Node.js to handle
incoming connections (via WebSockets or SSE) and Redis
as a Pub/Sub channel for broadcasting messages. Below in
(Figure. 1) is a simplified diagram showing how a message
is sent from one client to another via Redis’s Pub/Sub
mechanism:

www.arjonline.org | 26

Architectural Approaches to Building Real-Time Web Applications Based on WebSockets, SSE, and
WebRTC

Figure 1. Node.js + Redis Pub/Sub interaction diagram.

Client A sends a message via WebSocket to the Node.js
server, which publishes it to a Redis channel (for example,
“chat”). Redis notifies all servers subscribed to that channel,
and those servers then transmit the received data to their
connected clients, for instance, Client B. If necessary, the
originating server confirms delivery to Client A or relays
updated information to other connected clients. This setup
simplifies horizontal scaling and, with Redis clustering,
ensures high fault tolerance.

Using Kafka or similar message brokers

In larger systems, Kafka or similar solutions (RabbitMQ,
NATS, etc.) are often employed to ensure reliable delivery.
Kafka provides “guaranteed” delivery and message storage
in topics [5], allowing messages to be re-read in the event
of a failure and thus eliminating the risk of losing important
data. Each node (Node.js or any other) can both publish
messages to topics and subscribe to them, passing updates
to clients via WebSockets or SSE. Figure 2 shows a simplified
interaction scheme when using Kafka as a message broker:

Figure 2. Simplified interaction diagram when using Kafka.

Figure 3. Acknowledgment (ACK) and retry mechanism in a message broker.

Client A sends a message via WebSockets (or SSE) to the
Node.js #1 node, which “produces” this message to the
corresponding Kafka topic. Node.js #2, having “consumed”
the same topic, receives the new message from Kafka
and forwards it to its client, Client B, via WebSockets or
SSE. Thanks to message storage in topics and Kafka’s
acknowledgment mechanisms, delivery is guaranteed even
in the event of failures, which is especially crucial for high-
load and distributed systems.

Acknowledgment and retry mechanisms

For mission-critical messages (for example, transaction
information), basic Pub/Sub functionality may not
suffice. Additional mechanisms are needed for delivery
acknowledgments, idempotency, and message log storage.
Figure 3 shows a simplified sequence diagram illustrating
the process of publication, ACK, and potential message
redelivery.

The Producer publishes a message to the Broker (Kafka,
RabbitMQ, or another solution), which delivers the
message to the Consumer (subscriber). Upon successful
receipt, the Consumer sends an ACK back to the Broker. If

the acknowledgment is not received within the specified
time, the Broker returns the message to the queue and
redelivers it (retry). The Consumer (client) must explicitly
acknowledge (ACK) receipt of the message; otherwise, a

www.arjonline.org | 27

Architectural Approaches to Building Real-Time Web Applications Based on WebSockets, SSE, and
WebRTC

redelivery is initiated. Each message is accompanied
by a unique identifier so that redelivery does not
produce duplicates (idempotency). In the case of
Kafka, journal-based storage allows you to “rewind”

message processing to the required offset and reread
unread data. This mechanism ensures reliable delivery
of critical events and minimizes the risk of message
loss or duplication.

Table 2. Comparison of Node.js + Redis, Kafka, and ACK/Retry mechanisms

Solution / Mechanism Advantages Disadvantages
Node.js + Redis (Pub/
Sub)

- Easy to deploy (Node.js applications + Redis
cluster)
- Convenient for horizontal scaling
- Fast message exchange between multiple
servers

- At high loads, Redis clustering is required
- No built-in guaranteed delivery; additional
queuing (see ACK/Retry) is needed

Kafka (or equivalents) - “Guaranteed” delivery with the ability to re-
read messages
- Horizontal scaling by adding brokers-
Message history storage (topics)

- More complex infrastructure (managing
clusters, partitions)
- High resource requirements for large volumes
- Requires detailed configuration (ZooKeeper /
KRaft, ACL, etc.)

ACK/Retry +
Idempotency

- Eliminates loss or duplication of critical
messages
- Ability to “rewind” state (in case of Kafka)
- Guaranteed delivery in case of failures

- Complicates application or broker logic
- Must track delivery statuses and handle retries
- Requires unique identifiers and message log
storage

Scaling and load balancing of real-time
connections

Horizontal scaling and sticky sessions

When using WebSockets, it is important to maintain the
client’s “attachment” (sticky sessions) to a particular server
throughout the entire connection. This allows for correct
handling of incoming messages and sending responses
without reconnecting to another node. However, this
approach complicates load distribution among servers. In
more advanced scenarios, a “decentralized” structure can
be organized, where any node can handle requests from
any client, and the connection state is stored in a shared
distributed memory (for example, Redis).

Edge servers and CDNs for SSE

For implementing broadcast SSE streams, scaling can be
done using CDNs or edge servers (NGINX, Cloudflare, etc.)
[7,8]. This approach makes it possible to “bring” streams
closer to users, reducing latency and offloading the central
server. It is especially relevant when delivering updates to a
large number of subscribers.

Load balancing for WebRTC

In WebRTC, if there is no server intermediary (SFU/MCU),
most of the traffic goes directly between clients (P2P), and
STUN/TURN [3] is used to overcome NAT. As the number
of connections and the volume of transmitted media data
increase, the load shifts to the TURN server, which must
be scaled (for example, by using a Coturn cluster) and
balanced. This approach ensures stable connections and
minimal latency even in large projects with thousands of
simultaneously connected users.

A generalized scaling scheme

Below (Figure. 4) is a schematic diagram that demonstrates
the balancing principles for three real-time interaction
technologies: WebSockets (with sticky sessions or
decentralized state storage), SSE (through CDN/edge
servers), and WebRTC (with a dedicated STUN/TURN
server).

Figure 4. A generalized diagram of real-time connection
scaling.

This approach to scaling real-time connections takes into
account the specifics of each protocol and makes it possible
to efficiently distribute the load in systems with a large
number of concurrent users.

Monitoring and logging of real-time streams

Effective monitoring, logging, and tracing tools make it
possible to promptly identify bottlenecks, improve fault
tolerance, and ensure predictable service quality [9–12].

www.arjonline.org | 28

Architectural Approaches to Building Real-Time Web Applications Based on WebSockets, SSE, and
WebRTC

Figure 5 shows a summary diagram illustrating the main channels for collecting data on the operation of a real-time
system.

Figure 5. Collection and analysis of metrics, logs, and tracing in a real-time system.

Real-time metrics

It is recommended to track the following key metrics:

Number of active connections (via WebSocket, SSE, WebRTC).•	

Number of messages per second (incoming and outgoing).•	

Average round-trip time (RTT) for sending/receiving messages.•	

Prometheus [9] (in conjunction with Grafana [10]) or other SaaS solutions (Datadog, New Relic) are commonly used for
collecting and visualizing metrics. An agent (or exporter) is deployed alongside the application to gather technical data and
send it to the metrics server.

Event logging

When debugging and investigating incidents, it is important to maintain logs containing information about connection
statuses and sent/received messages.

For large volumes of data, it is better to use centralized systems such as the Elastic Stack, Splunk, or Graylog, which •	
enable convenient filtering of logs by key fields (e.g., session_id, user_id).

It is crucial to strike a balance between the level of detail in logs and the load on the system: excessive logging can slow •	
down the application.

Distributed Tracing

In a microservice architecture, messages can pass through a chain of services, and simple logging is often not enough.

Distributed tracing (Jaeger [11], Zipkin, OpenTelemetry [12]) reveals the path of a message between services as well as •	
the processing time at each stage.

This helps detect bottlenecks and long-running segments (hot spots), ultimately optimizing the entire real-time flow.•	

A comprehensive approach (metrics + logs + tracing) provides an all-encompassing understanding of how the real-time
system operates and enables rapid response to issues that arise in production.

Code Examples

Let’s look at brief examples of implementing real-time functionality in Node.js using various approaches—from the
WebSockets + Redis combination to SSE (Server-Sent Events).

Node.js WebSocket Server with Redis Pub/Sub

Below is a simplified example of a Server.js file, in which Node.js handles incoming WebSocket connections, and Redis is used
for message broadcasting (Pub/Sub):

www.arjonline.org | 29

Architectural Approaches to Building Real-Time Web Applications Based on WebSockets, SSE, and
WebRTC

const http = require(‘http’);
const WebSocket = require(‘ws’);
const redis = require(‘redis’);
// Create an HTTP server
const server = http.createServer();
const wss = new WebSocket.Server({ server });
// Connect to Redis
const redisSub = redis.createClient();
const redisPub = redis.createClient();
// Subscribe to the ‘chat’ channel
redisSub.subscribe(‘chat’);
// When a message is received from Redis, forward it to all connected clients
redisSub.on(‘message’, (channel, message) => {
 if (channel === ‘chat’) {
 wss.clients.forEach(client => {
 if (client.readyState === WebSocket.OPEN) {
 client.send(message);
 }
 });
 }
});
// Handle incoming WebSocket connections
wss.on(‘connection’, ws => {
 // When a message is received from the client, publish it to Redis
 ws.on(‘message’, msg => {
 redisPub.publish(‘chat’, msg);
 });
});
server.listen(3000, () => {
 console.log(‘WebSocket + Redis server listening on port 3000’);
});

Here, every message received from a client (via WebSocket) is “replicated” through the chat channel in Redis, after which all
servers (when there are multiple) get notified and relay the update to their connected clients.

SSE Example (code snippet)

The following snippet shows how to set up a simple SSE (Server-Sent Events) server in Node.js. This server sends a new
“event” with the current time to clients every 5 seconds:

const http = require(‘http’);

http.createServer((req, res) => {
 if (req.url === ‘/stream’) {
 res.writeHead(200, {
 ‘Content-Type’: ‘text/event-stream’,
 ‘Cache-Control’: ‘no-cache’,
 ‘Connection’: ‘keep-alive’,
 });
 // Send an event every 5 seconds
 const intervalId = setInterval(() => {
 const data = { time: new Date().toISOString() };
 res.write(`data: ${JSON.stringify(data)}\n\n`);
 }, 5000);
 // Free resources when the connection closes
 req.on(‘close’, () => {
 clearInterval(intervalId);
 });
 }
}).listen(4000, () => {
 console.log(‘SSE server running on port 4000’);
});

www.arjonline.org | 30

Architectural Approaches to Building Real-Time Web Applications Based on WebSockets, SSE, and
WebRTC

To receive SSE messages in the browser, simply connect to http://localhost:4000/stream via EventSource:

<script>
 const evtSource = new EventSource(‘/stream’);
 evtSource.onmessage = (e) => {
 console.log(‘New SSE data:’, e.data);
 };
</script>

The client will automatically receive updates every 5 seconds.
When the tab is closed or the connection is lost, EventSource
will attempt to reestablish the connection, making SSE
convenient for tasks involving regular data broadcasts from
server to client.

Conclusion
Developing real-time web applications requires a deep
understanding of network protocols and architectural
solutions. WebSockets provide full-fledged two-way
communication, SSE simplifies one-way data streaming from
server to client, and WebRTC enables direct P2P interaction
(including audio and video streams). The choice of a specific
approach depends on the particular use case, the required
transmission speed, the volume of data, and the network
topology.

In high-load environments, well-thought-out scaling and
fault-tolerance mechanisms are essential for success: using
message brokers (Redis Pub/Sub, Kafka), implementing
acknowledgment mechanisms (ACK, retry), and organizing
either sticky sessions or decentralized state storage when
working with WebSockets. To maintain a stable service level,
it is necessary to track key metrics in real time (RTT, number
of connections, traffic volume) and maintain centralized
logging; in complex microservice architectures, distributed
tracing should be used.

Thus, a comprehensive approach that includes choosing
the optimal technology (WebSockets, SSE, or WebRTC), a
reliable Pub/Sub infrastructure, and monitoring tools makes
it possible to build scalable, fault-tolerant, and truly “live”
web systems that meet the requirements of today’s internet.

References
Fette I., Melnikov A. The WebSocket Protocol (IETF RFC 1.	
6455). 2011.Available from: https://datatracker.ietf.
org/doc/html/rfc6455 Accessed: 01.09.2025

Hickson I. Server-Sent Events. WHATWG. n.d. Available 2.	
from: https://html.spec.whatwg.org/multipage/server-
sent-events.html

Bergkvist A., Burnett D., Jennings C., Narayanan A. 3.	
WebRTC 1.0: Real-time Communication Between
Browsers. W3C Working Draft. n.d. Available from:
https://www.w3.org/TR/webrtc/

Redis Labs. Redis Pub/Sub Documentation. 2025. 4.	
Available from: https://redis.io/docs/manual/pubsub/

Apache Kafka. Apache Kafka Documentation. 5.	
2025. Available from: https://kafka.apache.org/
documentation/

Node.js Documentation. 2025. Available from:6.	 https://
nodejs.org/en/docs

NGINX Documentation. 2025. Available from:7.	 https://
nginx.org/en/docs/

Cloudflare Documentation 2025. Available from:8.	 https://
developers.cloudflare.com/

Prometheus Documentation. 2025. Available from:9.	
https://prometheus.io/

Grafana Documentation. 2025. Available from:10.	 https://
grafana.com/

Jaeger Documentation. 2025. Available from:11.	 https://
www.jaegertracing.io/docs/

OpenTelemetry Documentation. 2025. Available from:12.	
https://opentelemetry.io/

Citation: Andrei Chmelev, “Architectural Approaches to Building Real-Time Web Applications Based on WebSockets,
SSE, and WebRTC”, American Research Journal of Computer Science and Information Technology, Vol 8, no. 1, 2025,
pp. 24-30.

Copyright © 2025 Andrei Chmelev, This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

