
www.arjonline.org | 31

American Research Journal of Computer Science and Information Technology

Volume 8, Issue 1, 31-35 Pages
Research Article | Open Access
ISSN (Online)- 2572-2921
DOI : 10.21694/2572-2921.25006

Comparison of API Construction Approaches: REST vs.
GraphQL in Modern Applications

Danylo Sereda
B.Sc. in Automation and Computer-Integrated Technologies, National Technical University of Ukraine “Igor Sikorsky Kyiv

Polytechnic Institute”, Kyiv, Ukraine.

Abstract

With the increasing complexity and scalability of modern applications, choosing the optimal API architectural style has
become a key task for developers. REST and GraphQL are two popular approaches, each with its own unique features,
advantages, and limitations. This article is devoted to comparing these two approaches in order to facilitate the
decision-making process for developers and companies. We analyze in detail the differences between REST and GraphQL,
highlighting their strengths and weaknesses in different usage contexts. Special attention is paid to how these differences
can affect productivity, development time, and end user satisfaction. Understanding these aspects will allow you to choose
the approach that best meets the requirements of a particular project, minimizing risks and contributing to effective
application development.

Keywords: applications, REST, GraphQL, performance, efficient development, risks.

Introduction

With the rapid advancement of technologies and the
increasing complexity of modern applications, developers
and technical managers face critical decision-making
regarding application architecture. One such crucial decision
is selecting the appropriate API architectural style. REST and
GraphQL, as the two most prominent methodologies, offer
distinct approaches to data exchange between client and
server. However, understanding their specific characteristics
and optimal use cases can present a significant challenge for
professionals.

The objective of this article is to provide a clear and
comprehensive comparative analysis of these two approaches,
with a focus on their application in modern software
development. We aim to assist developers and technical
managers in making well-informed decisions tailored to their
project requirements. To achieve this goal, the study focuses
on addressing several key tasks: we thoroughly examine the
core concepts of REST and GraphQL, evaluate their strengths
and weaknesses across different use cases, and analyze real-
world implementations and case studies of both paradigms.

Furthermore, particular emphasis is placed on identifying
scenarios where one approach may prove more advantageous
than the other. This study provides valuable insights that

can serve as a practical guide for professionals seeking to
optimize development workflows and enhance the overall
efficiency of their projects.

REST

REST (Representational State Transfer) is an architectural
approach that facilitates data interaction via the HTTP
protocol and represents information in multiple formats,
including XML, JSON, and others [3]. This methodology
simplifies access to web services by leveraging existing
standards rather than introducing additional data processing
layers into the network stack. As a lightweight alternative
to the more complex SOAP protocol, REST operates on the
principle of self-descriptive resources accessible through
HTTP. In this paradigm, services are treated as addressable
resources that can be consumed as needed.

To retrieve information about a user with ID 1, a client would
access the URI http://www.example.com/rest/user/1 through
a web browser or API call. RESTful services utilize standard
HTTP methods – including GET (retrieve), PUT (update),
POST (create), and DELETE (remove) – to perform CRUD
(Create, Read, Update, Delete) operations on resources. In
this architecture, each URI (Uniform Resource Identifier)
serves as a unique address for resource identification and
manipulation [6] (fig.1.) .

www.arjonline.org | 32

Comparison of API Construction Approaches: REST vs. GraphQL in Modern Applications

Figure 1. Diagram showing the process of obtaining user
information [6]

In his seminal 2000 doctoral dissertation, Roy Fielding first
formalized the API architectural style that has since become
the dominant paradigm for web services. Now universally
recognized as REST (Representational State Transfer),
this approach is defined by six mandatory architectural
constraints that must be satisfied for full RESTful compliance.
Compared to SOAP’s rigid specifications, REST offers a more
flexible framework for distributed systems design.

This approach delivers server-side information in
standardized, widely-adoptable formats — predominantly
JSON and XML. As a self-descriptive architectural style, REST
was specifically engineered for large-scale consumption
by diverse API clients. Its constrained design inherently
facilitates straightforward access to server-hosted data
resources while maintaining platform independence.

The architecture enables independent evolution of client and
server components through a strict separation of concerns.
Client-server interactions are conducted via standardized
protocols, ensuring uniform access across diverse devices
and applications. A fundamental characteristic is its stateless
nature — all necessary processing data is contained within
each request, thereby relieving the server of any obligation
to maintain session information.

The system’s layered architecture is further enhanced by
data caching capabilities and the server’s ability to transmit
executable code to the client side. It should be noted that
in practice, many services only partially adhere to these
architectural principles, failing to implement the complete
set of RESTful requirements [6].

HATEOAS (Hypermedia as the Engine of Application State)
constitutes a fundamental constraint in REST architecture.
This principle enables independent client-server evolution
while maintaining seamless interoperability. The hypermedia
approach mandates that every REST API response includes
machine-interpretable metadata, comprehensively

describing all available interface capabilities and state
transitions [9].

The HTTP infrastructure is leveraged efficiently within this
approach, where large-scale services are decomposed into
discrete resources while maintaining an RPC-style foundation.
This architectural paradigm enables both API developers
and consumers to evolve their systems independently while
guaranteeing uninterrupted interoperability.

Even high-quality REST API interfaces often fail to meet
the highest standards today. HATEOAS represents the most
advanced form of REST architecture, but its implementation
comes with significant challenges. Modern API clients
typically lack sufficient intelligence and functionality to fully
support this approach, making it particularly difficult to
achieve this level of REST maturity.

HATEOAS primarily serves as a guiding principle that shapes
the strategic evolution of API architecture in accordance with
REST’s core concepts.

GraphQL
In contrast to traditional REST APIs, GraphQL introduces a
fundamentally novel approach to data interaction (Fig. 2).
This innovative query language and specification effectively
addresses issues of data over-fetching and under-fetching.
Clients gain unprecedented flexibility by requesting
precisely the data they require, substantially simplifying API
consumption. Designed specifically for information retrieval
optimization, GraphQL delivers more efficient and intuitive
data interaction capabilities.

Figure 2. RESTful API compared to GraphQL [7]

Mastering GraphQL has become increasingly accessible
to professionals of varying skill levels due to its intuitive
syntax and conceptual framework [7]. With high-quality
learning resources, even novice developers can successfully
implement this technology. A foundational understanding
of web development—including HTTP principles, API
interactions, and data processing—significantly facilitates

www.arjonline.org | 33

Comparison of API Construction Approaches: REST vs. GraphQL in Modern Applications

the learning process. Integrating GraphQL’s server and
client components is notably streamlined with proficiency
in JavaScript or other supported programming languages.
Familiarity with development ecosystem tools, particularly
Node.js and the npm package manager, provides additional
advantages.

Facebook’s development team introduced GraphQL to the
world – an innovative query language and API runtime that
surpasses traditional REST APIs in flexibility and efficiency.
This technology enables developers to eliminate problems of
data over-fetching and under-fetching by requesting precisely
the required information. With fundamental knowledge in
data modeling and web development, one can begin learning
GraphQL. Even novice programmers can quickly master
this technology and implement it in their own projects with
moderate perseverance [8].

Precise data retrieval is the principal advantage of GraphQL
technology. Traditional RESTful APIs often suffer from two
opposing issues: they either return excessive data or provide
insufficient information.

GraphQL addresses this dilemma elegantly. Users define the
exact scope of the required data within their queries. This
approach ensures that clients receive precisely what they
requested—no more, no less.

The ability to request data with pinpoint precision eliminates
common shortcomings of REST architecture. Instead of
receiving bulky payloads of unnecessary information
or making additional requests to obtain missing details,
GraphQL enables clients to construct perfectly balanced
queries.

There exists a specialized method of communication with
databases for data retrieval and analysis—declarative queries
[8]. Complex information requirements can be expressed
without delving into the technical intricacies of the process.
Users articulate their needs using a dedicated language that
renders the querying process intuitive and accessible.

This approach allows users to focus on the essence of the
query. The simplicity of expressing required data is a key
advantage. The variety of possible formulations provides
flexibility. Both concise and elaborate expressions are equally
effective. The structure of queries may vary significantly in
scope and complexity [3].

In contrast to the ambiguity often associated with REST APIs,
GraphQL’s strongly typed schema offers developers a precise
blueprint of the data. This technology not only defines explicit
types and structures for both server and client sides but also
helps eliminate uncertainties in communication between
application components.

One of GraphQL’s key capabilities is the consolidation of
heterogeneous data sources into a single access point, which
significantly simplifies data handling. The clear definition of
the schema ensures stable interactions within the system,
thereby enhancing development efficiency.

With GraphQL, we can gather all the necessary information
from a single source, avoiding the need to query multiple
disparate resources. This greatly streamlines the data
retrieval process.

Thanks to a unified interface, in contrast to REST with its
multiple endpoints, API administration becomes significantly
simpler—this is one of the key advantages of GraphQL
technology.

The ability to check the availability of fields in GraphQL
allows developers to gradually phase out deprecated
elements instead of removing them abruptly [3]. This
approach ensures evolutionary development and version
management without interrupting the operation of existing
client applications, as GraphQL structures can evolve over
time without causing disruptions for users.

The implementation of GraphQL entails significant initial
effort. Developing and configuring the GraphQL server
schema is considerably more complex and time-consuming
compared to building a traditional RESTful API.

Mastering GraphQL can present a significant challenge for
beginners. The need to learn specific concepts and adhere
to particular patterns requires considerable initial time and
effort investments.

However, once the initial learning curve is overcome, GraphQL
provides access to powerful functionality [7]. The increased
flexibility and efficiency in query handling ultimately offset
the initial complexities and additional configurations,
offering more optimal ways of data retrieval.

The initial setup of GraphQL requires considerable effort,
surpassing the complexity of creating RESTful interfaces.
Beginners will need to delve into concepts and guidelines,
which may present challenges in the early stages.

Even with GraphQL, there is a risk of system overload due
to excessive queries. Poorly formulated queries can retrieve
redundant information, placing unnecessary load on the
server. While GraphQL minimizes the number of unnecessary
server requests, the issue is not completely eliminated.

To prevent performance issues, careful schema design and
query optimization are essential. It is important to take
additional steps to avoid data over-fetching, especially when
requesting too much information at once.

To achieve optimal performance, it is crucial to request only
the necessary information by carefully designing the schema
structure and optimizing the queries.

Security when working with GraphQL requires special
attention. Developers must implement protective
mechanisms against potential threats, particularly when
dealing with complex queries with excessive nesting [4].
Among the effective security measures, query rate limiting
and pre-validation stand out, as they help minimize potential
vulnerabilities in API interfaces.

www.arjonline.org | 34

Comparison of API Construction Approaches: REST vs. GraphQL in Modern Applications

Unlike RESTful APIs, caching strategies in GraphQL require special attention due to the uniqueness of client queries, which
creates challenges in performance optimization. The overload protection system includes time limits on the number of
allowed requests and validation to ensure queries comply with established parameters. Efficient response caching becomes
a challenging task when each query is unique, significantly complicating the caching process compared to traditional API
interfaces. The distinguishing features of REST and GraphQL are presented in Table 1.

Table 1. Comparing REST и GraphQL (compiled by the author).

Criterion REST GraphQL
Description An architectural style widely adopted as the de

facto standard for API design.
A query language specifically designed to
address common API integration challenges.

Architecture Server-centric (clients interact with predefined
endpoints).

Client-centric (queries are dynamically tailored
to client needs).

Data Fetching Often results in over-fetching or under-fetching of
data.

Eliminates issues of over-fetching and under-
fetching.

Response Format Supports XML, JSON, and YAML response formats. Exclusively returns responses in JSON format.
Response Structure Determined by the server. Defined by the client’s query requirements.
Caching Built-in response caching by default. Lacks automatic caching mechanisms.
 Security No native support for type checking or automatic

documentation
Provides type safety guarantees and generates
documentation automatically

Consider the development of a library system that tracks
authors and their works. When using traditional REST
architecture, the client-side application in React is forced to
make separate requests to different endpoints—retrieving
data about literary works and separately about their creators.
In contrast, GraphQL allows for combining these interrelated
information needs into a single composite query.

For projects with dynamically changing requirements and
the need for complex data queries, GraphQL is the preferred
choice. However, if the application is characterized by relative
simplicity and a clearly defined resource model, the REST
approach may prove to be a more suitable solution.

The uniqueness of queries in client requests necessitates
a thoughtful approach to storing responses in order to
optimize the servicing process.

A poorly designed GraphQL schema can lead to serious
consequences: decreased performance, difficulties in
handling heavy traffic, and challenges in serving numerous
users. To prevent ongoing technical difficulties and the need
for regular adjustments, it is critical to pay special attention
to data structuring and establishing correct relationships
between different informational components [6].

Developing an efficient schema involves certain resource
costs; however, these investments are justified considering
the potential issues that may arise from insufficiently careful
data architecture planning.

Transitioning to GraphQL is a challenging task for
development teams. This journey can be especially difficult
for specialists accustomed to working with RESTful APIs.
The new technology requires immersion in unfamiliar
concepts and approaches, creating certain obstacles in the
learning process. Mastering this tool becomes a true test,
requiring time and effort to adapt to a different programming
paradigm.

Conclusion

In this article, we have provided a comparative analysis
of two key approaches to API development—REST and
GraphQL—to assist developers and technical managers in
making informed decisions when selecting a technology for
their projects. The main concepts of both approaches were
examined based on a review of current scientific publications,
technical documentation, and real-world case studies.

Our analysis shows that REST, as a more mature and
widely used technology, offers simplicity and reliability
in application architectures where data has stable and
predictable structures. Its natural integration with the HTTP
protocol and rich ecosystem make it the preferred choice for
many traditional server-side solutions.

GraphQL, on the other hand, stands out for its flexibility and
efficiency in cases requiring dynamic and complex queries.
This approach is particularly useful for mobile applications
and complex interfaces, where optimizing network requests
is critically important. However, it requires more complex
setup and understanding, which may increase the initial
design complexity of the system.

Thus, the choice between REST and GraphQL should be
made based on the specific needs and context of the project.
REST is suitable for projects with predictable data structures
and minimal changes, while GraphQL can be more effective
for dynamic systems with evolving data requirements.
The research shows that neither approach is universally
superior: their application depends on the specific technical
and business requirements of the project.

REFERENCES

Kozhanov P.S., Gotskaya I.B. Comparative analysis of 1.	
approaches to client-server interaction organization in
modern web applications, using REST API and GRAPHQL

www.arjonline.org | 35

Comparison of API Construction Approaches: REST vs. GraphQL in Modern Applications

as examples // Modern Science-Intensive Technologies.
- 2024. - Vol. 5 (2). - pp. 284-293.

Tonkushin M.V., Gudkov K.V. Comparative analysis of 2.	
GraphQL and REST technologies // Modern Information
Technologies. - 2019. - Vol. 29. - pp. 127-131.

Gridin V.N., Anisimov V.I., Vasiliev S.A. Methods for 3.	
improving the performance of modern web applications
// Izvestiya of South Federal University. Technical
Sciences. - 2020. - Vol.4. - pp. 193-200.

Buna S. GraphQL in action (1st edition.) — Manning 4.	
Publications. - 2021. - 375 p.

Ananchenko I.V., Churikov E.A. Optimization of HTTP 5.	
requests by transitioning from REST API to GraphQL //
Current Issues in Modern Science: Proceedings of the III
International Scientific and Practical Conference (Penza,
September 25, 2022). Penza: Science and Enlightenment
(IP Gulyaev G.Y.). - 2022. – pp. 11-14.

Kumari S., Rath S. K. Performance comparison of soap 6.	
and rest based web services for enterprise application
integration // 2015 International Conference on
Advances in Computing, Communications and
Informatics (ICACCI). — 2015. — pp. 1656-1660.

Mikula M., Denkovski M. Comparison of REST and 7.	
GraphQL Web Technology Performance // Journal of
Computer Science-Institute of Science. - 2020. - pp. 309-
316.

 Serrano N., Hernantes J., Gallardo G. Service-oriented 8.	
architecture and legacy systems //IE software. – 2014.
– Vol. 31 (5). – pp. 15-19.

Subramanian H. “Hands-On RESTful API Design Patterns 9.	
and Best Practices: Design, develop, and deploy highly
adaptable, scalable, and secure RESTful web APIs” —
Packt Publishing. - 2019. - p. 378.

Tihomirovs J., Grabis J. Comparison of soap and rest 10.	
based web services using software evaluation metrics
//Information technology and management science. –
2016. –Vol. 1 (19). – pp. 92-97.

Citation: Danylo Sereda, “Comparison of API Construction Approaches: REST vs. GraphQL in Modern Applications”,
American Research Journal of Computer Science and Information Technology, Vol 8, no. 1, 2025, pp. 31-35.

Copyright © 2025 Danylo Sereda, This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

