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OSCILLATORY BEHAVIOR FOR A COUPLED STUART-LAN-
DAU OSCILLATOR MODEL WITH DELAYS    

Chunhua Feng
Department of Mathematics and Computer Science, Alabama State University,

Montgomery, AL, 36104, USA

Abstract: In this paper, the oscillatory behavior of the solutions for a coupled Stuart-Landau oscillator model with 
delays is investigated. Time delay induced partial death patterns with conjugate coupling in relay oscillators  has 
been investigated in the literature which  is very special case because this model includes only one delay. According 
to the practical problem, the propagation delays are not the same as one. A model includes six different time 
delays is considered. By mathematical analysis method, the oscillatory behavior of the Stuart-Landau oscillators is 
brought to the instability of a unique equilibrium point of the model and the boundedness of the solutions.  Some 
sufficient conditions to guarantee the existence of oscillatory solutions which are very easy to check comparing to 
the bifurcating method are provided. Computer simulations are given to support the present results. Our simulation 
suggests that time delays affect the oscillatory frequency much and amplitude slightly.
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INTRODUCTION

It is well known that the coupled dynamical systems with time-delays arise in various applications including 

semiconductor lasers [1-3], electronic circuits [4], optoelectronic oscillators [5], mechanical system [6, 

7], neuronal networks [8-13], socioeconomic systems [14], and many others [15-24]. Recently, Sharma has 

investigated the following delay-coupled Stuart-Landau oscillators [25]:

                                                                (1)

where   is the intrinsic frequency of each oscillator. The parameter  controls 

the conjugate coupling strength,  and  are the propagation delays associated with the  and  variables of 

the system. Initially for simplicity, the author took   , and the parameter   has the 

potential to control and can be easily implemented in practical situations. Time delay induced partial death 
patterns with conjugate coupling in relay oscillators has been considered. However,    is a very 
special case. In this paper we consider the following general coupled time delay model: 
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OSCILLATORY BEHAVIOR FOR A COUPLED STUART-LANDAU OSCILLATOR MODEL WITH DELAYScoupling in relay oscillators has been considered. However,  𝜏𝜏𝑥𝑥 = 𝜏𝜏𝑦𝑦 = 𝜏𝜏 is a very special case. 
In this paper we consider the following general coupled time delay model: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥1

� = 𝑝𝑝1𝑥𝑥1 − 𝜔𝜔11𝑦𝑦1 + 𝜀𝜀12[𝑦𝑦2(𝑡𝑡 − 𝜏𝜏2) − 𝑥𝑥1],
𝑦𝑦1

� = 𝑝𝑝1𝑦𝑦1 + 𝜔𝜔11𝑥𝑥1 + 𝛼𝛼𝜀𝜀21[𝑥𝑥2(𝑡𝑡 − 𝜃𝜃2) − 𝑦𝑦1],
𝑥𝑥2

� = 𝑝𝑝2𝑥𝑥2 − 𝜔𝜔22𝑦𝑦2 + 𝜀𝜀21[𝑦𝑦1(𝑡𝑡 − 𝜏𝜏1) − 𝑥𝑥2] + 𝜀𝜀23[𝑦𝑦3(𝑡𝑡 − 𝜏𝜏3) − 𝑥𝑥2],
𝑦𝑦2

� = 𝑝𝑝2 + 𝜔𝜔22𝑥𝑥2 + 𝛼𝛼𝜀𝜀12[𝑥𝑥1(𝑡𝑡 − 𝜃𝜃1) − 𝑦𝑦2] + 𝛼𝛼𝜀𝜀32[𝑥𝑥3(𝑡𝑡 − 𝜃𝜃3) − 𝑦𝑦2],
𝑥𝑥3

� = 𝑝𝑝3𝑥𝑥3 − 𝜔𝜔33𝑦𝑦3 + 𝜀𝜀32[𝑦𝑦2(𝑡𝑡 − 𝜏𝜏2) − 𝑥𝑥3],
𝑦𝑦3

� = 𝑝𝑝3𝑥𝑥3 + 𝜔𝜔33𝑦𝑦3 + 𝛼𝛼𝜀𝜀32[𝑥𝑥2(𝑡𝑡 − 𝜃𝜃2) − 𝑦𝑦3].

             (2) 

where  𝑝𝑝𝑖𝑖 = 1 − 𝑥𝑥𝑖𝑖
2 − 𝑦𝑦𝑖𝑖

2 ,   time delays 𝜏𝜏𝑖𝑖 > 0, 𝜃𝜃𝑖𝑖 > 0, parameters 𝜔𝜔𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅 (𝑖𝑖 = 1,2,3),     and 
0 < 𝛼𝛼 < 1. Our goal is to investigate the oscillatory behavior of the solutions for model (2). 
Noting that there are six different time delay values, bifurcation method is hard to deal with 
system (2). By means of mathematical analysis method, the dynamical behavior of system (2) 
has been discussed. 

  
2. Preliminaries 

The system (2) can be expressed in the following matrix form: 

         𝑢𝑢�(𝑡𝑡) = 𝐴𝐴𝑢𝑢(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡 − 𝜏𝜏) + 𝑔𝑔(𝑢𝑢(𝑡𝑡))                                  (3) 

where (𝑡𝑡) = (𝑥𝑥1(𝑡𝑡),  𝑦𝑦1(𝑡𝑡), ⋯ ,  𝑥𝑥3(𝑡𝑡),  𝑦𝑦3(𝑡𝑡))�,          𝑢𝑢(𝑡𝑡 − 𝜏𝜏) = (𝑥𝑥1(𝑡𝑡 − 𝜃𝜃1),  𝑦𝑦1(𝑡𝑡 −
𝜏𝜏1),       ⋯ , 𝑥𝑥3(𝑡𝑡 − 𝜃𝜃3),  𝑦𝑦3(𝑡𝑡 − 𝜏𝜏3))�,  A and B both are six by six matrices, and 𝑔𝑔(𝑢𝑢(𝑡𝑡)) is a six 
by one vector: 

𝐴𝐴 =  �𝑎𝑎𝑖𝑖𝑖�6×6 =

⎝

⎜⎜
⎛

𝑎𝑎11 −𝜔𝜔11 0 0 0 0
𝜔𝜔11 𝑎𝑎22 0 0 0 0

0
0
0
0

0
0
0
0

𝑎𝑎33
𝜔𝜔22

0
0

−𝜔𝜔22
𝑎𝑎44
0
0

0
0

𝑎𝑎55
𝜔𝜔33

0
0

−𝜔𝜔33
𝑎𝑎66 ⎠

⎟⎟
⎞

, 

where  𝑎𝑎11 = 1 − 𝜀𝜀12, 𝑎𝑎22 = 1 − 𝛼𝛼𝜀𝜀21,  𝑎𝑎33 = 1 − 𝜀𝜀21 − 𝜀𝜀23,   𝑎𝑎44 = 1 − 𝛼𝛼𝜀𝜀12 − 𝛼𝛼𝜀𝜀32,    𝑎𝑎55 =
1 − 𝜀𝜀32,  𝑎𝑎66 = 1 − 𝛼𝛼𝜀𝜀23. 

           𝐵𝐵 =  �𝑏𝑏𝑖𝑖𝑖�6×6 =

⎝

⎜⎜
⎛

0 0 0 𝜀𝜀12 0 0
0 0 𝛼𝛼𝜀𝜀21 0 0 0
0

𝛼𝛼𝜀𝜀12
0
0

𝜀𝜀21
0
0
0

0
0
0

𝛼𝛼𝜀𝜀23

0
0

𝜀𝜀32
0

0
𝛼𝛼𝜀𝜀32

0
0

𝜀𝜀23
0
0
0 ⎠

⎟⎟
⎞

, 

𝑔𝑔(𝑢𝑢) = (−𝑥𝑥1
3 − 𝑥𝑥1𝑦𝑦1

2, −𝑥𝑥1
2𝑦𝑦1 − 𝑦𝑦1

3, ⋯,   − 𝑥𝑥3
3 − 𝑥𝑥3𝑦𝑦3

2, −𝑥𝑥3
2𝑦𝑦3 − 𝑦𝑦3

3 )�. 

                                  (2)

where    time delays , , parameters      and 

 Our goal is to investigate the oscillatory behavior of the solutions for model (2). Noting that there 
are six different time delay values, bifurcation method is hard to deal with system (2). By means of mathematical 
analysis method, the dynamical behavior of system (2) has been discussed.

PRELIMINARIES

The system (2) can be expressed in the following matrix form: 

                                                                                                                  (3)

where u ( ) = ( ( ),  ( ) , ··· ,  ( ) ,  ( )) ,          ( − ) = ( ( − ),  ( − ) ,   

 ··· , ( − ),  ( − )) , A and B boh are six by six matrices, and  is a six by one vector:

coupling in relay oscillators has been considered. However,  𝜏𝜏𝑥𝑥 = 𝜏𝜏𝑦𝑦 = 𝜏𝜏 is a very special case. 
In this paper we consider the following general coupled time delay model: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥1

� = 𝑝𝑝1𝑥𝑥1 − 𝜔𝜔11𝑦𝑦1 + 𝜀𝜀12[𝑦𝑦2(𝑡𝑡 − 𝜏𝜏2) − 𝑥𝑥1],
𝑦𝑦1

� = 𝑝𝑝1𝑦𝑦1 + 𝜔𝜔11𝑥𝑥1 + 𝛼𝛼𝜀𝜀21[𝑥𝑥2(𝑡𝑡 − 𝜃𝜃2) − 𝑦𝑦1],
𝑥𝑥2

� = 𝑝𝑝2𝑥𝑥2 − 𝜔𝜔22𝑦𝑦2 + 𝜀𝜀21[𝑦𝑦1(𝑡𝑡 − 𝜏𝜏1) − 𝑥𝑥2] + 𝜀𝜀23[𝑦𝑦3(𝑡𝑡 − 𝜏𝜏3) − 𝑥𝑥2],
𝑦𝑦2

� = 𝑝𝑝2 + 𝜔𝜔22𝑥𝑥2 + 𝛼𝛼𝜀𝜀12[𝑥𝑥1(𝑡𝑡 − 𝜃𝜃1) − 𝑦𝑦2] + 𝛼𝛼𝜀𝜀32[𝑥𝑥3(𝑡𝑡 − 𝜃𝜃3) − 𝑦𝑦2],
𝑥𝑥3

� = 𝑝𝑝3𝑥𝑥3 − 𝜔𝜔33𝑦𝑦3 + 𝜀𝜀32[𝑦𝑦2(𝑡𝑡 − 𝜏𝜏2) − 𝑥𝑥3],
𝑦𝑦3

� = 𝑝𝑝3𝑥𝑥3 + 𝜔𝜔33𝑦𝑦3 + 𝛼𝛼𝜀𝜀32[𝑥𝑥2(𝑡𝑡 − 𝜃𝜃2) − 𝑦𝑦3].

             (2) 

where  𝑝𝑝𝑖𝑖 = 1 − 𝑥𝑥𝑖𝑖
2 − 𝑦𝑦𝑖𝑖

2 ,   time delays 𝜏𝜏𝑖𝑖 > 0, 𝜃𝜃𝑖𝑖 > 0, parameters 𝜔𝜔𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅 (𝑖𝑖 = 1,2,3),     and 
0 < 𝛼𝛼 < 1. Our goal is to investigate the oscillatory behavior of the solutions for model (2). 
Noting that there are six different time delay values, bifurcation method is hard to deal with 
system (2). By means of mathematical analysis method, the dynamical behavior of system (2) 
has been discussed. 

  
2. Preliminaries 

The system (2) can be expressed in the following matrix form: 

         𝑢𝑢�(𝑡𝑡) = 𝐴𝐴𝑢𝑢(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡 − 𝜏𝜏) + 𝑔𝑔(𝑢𝑢(𝑡𝑡))                                  (3) 

where (𝑡𝑡) = (𝑥𝑥1(𝑡𝑡),  𝑦𝑦1(𝑡𝑡), ⋯ ,  𝑥𝑥3(𝑡𝑡),  𝑦𝑦3(𝑡𝑡))�,          𝑢𝑢(𝑡𝑡 − 𝜏𝜏) = (𝑥𝑥1(𝑡𝑡 − 𝜃𝜃1),  𝑦𝑦1(𝑡𝑡 −
𝜏𝜏1),       ⋯ , 𝑥𝑥3(𝑡𝑡 − 𝜃𝜃3),  𝑦𝑦3(𝑡𝑡 − 𝜏𝜏3))�,  A and B both are six by six matrices, and 𝑔𝑔(𝑢𝑢(𝑡𝑡)) is a six 
by one vector: 
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⎝

⎜⎜
⎛

𝑎𝑎11 −𝜔𝜔11 0 0 0 0
𝜔𝜔11 𝑎𝑎22 0 0 0 0

0
0
0
0

0
0
0
0

𝑎𝑎33
𝜔𝜔22

0
0

−𝜔𝜔22
𝑎𝑎44

0
0

0
0
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0
0

−𝜔𝜔33
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⎟⎟
⎞
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where  𝑎𝑎11 = 1 − 𝜀𝜀12, 𝑎𝑎22 = 1 − 𝛼𝛼𝜀𝜀21,  𝑎𝑎33 = 1 − 𝜀𝜀21 − 𝜀𝜀23,   𝑎𝑎44 = 1 − 𝛼𝛼𝜀𝜀12 − 𝛼𝛼𝜀𝜀32,    𝑎𝑎55 =
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⎜⎜
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0 0 0 𝜀𝜀12 0 0
0 0 𝛼𝛼𝜀𝜀21 0 0 0
0

𝛼𝛼𝜀𝜀12
0
0

𝜀𝜀21
0
0
0

0
0
0

𝛼𝛼𝜀𝜀23

0
0

𝜀𝜀32
0

0
𝛼𝛼𝜀𝜀32

0
0

𝜀𝜀23
0
0
0 ⎠

⎟⎟
⎞

, 

𝑔𝑔(𝑢𝑢) = (−𝑥𝑥1
3 − 𝑥𝑥1𝑦𝑦1

2, −𝑥𝑥1
2𝑦𝑦1 − 𝑦𝑦1

3, ⋯,   − 𝑥𝑥3
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2, −𝑥𝑥3
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where       
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The linearized system of (3) is

                                                                                                                                           (4)

Lemma 1 If matrix     is a nonsingular matrix for selected parameters, then there exists a unique 
equilibrium point for system (2) (or (3)). 

Proof Assume that     is an equilibrium point of system (2), then we have the 
following algebraic equation

 

The linearized system of (3) is 

𝑢𝑢�(𝑡𝑡) = 𝐴𝐴𝑢𝑢(𝑡𝑡) + 𝐵𝐵𝑢𝑢(𝑡𝑡 − 𝜏𝜏)                                    (4) 

Lemma 1 If matrix  𝑀𝑀 (= 𝐴𝐴 + 𝐵𝐵)   is a nonsingular matrix for selected parameters, then there 
exists a unique equilibrium point for system (2) (or (3)).  

Proof Assume that   𝑢𝑢∗ = (𝑥𝑥1
∗, 𝑦𝑦1

∗, ⋯ , 𝑥𝑥3
∗, 𝑦𝑦3

∗)�  is an equilibrium point of system (2), then we 
have the following algebraic equation 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑝𝑝1

∗𝑥𝑥1
∗ − 𝜔𝜔11𝑦𝑦1

∗ + 𝜀𝜀12(𝑦𝑦2
∗ − 𝑥𝑥1

∗) = 0,
𝑝𝑝1

∗𝑦𝑦1
∗ + 𝜔𝜔11𝑥𝑥1

∗ + 𝛼𝛼𝜀𝜀21(𝑥𝑥2
∗ − 𝑦𝑦1

∗) = 0,
𝑝𝑝2

∗𝑥𝑥2
∗ − 𝜔𝜔22𝑦𝑦2

∗ + 𝜀𝜀21(𝑦𝑦1
∗ − 𝑥𝑥2

∗) + 𝜀𝜀23(𝑦𝑦3
∗ − 𝑥𝑥2

∗) = 0,
𝑝𝑝2

∗𝑦𝑦2
∗ + 𝜔𝜔22𝑥𝑥2

∗ + 𝛼𝛼𝜀𝜀12(𝑥𝑥1
∗ − 𝑦𝑦2

∗) + 𝛼𝛼𝜀𝜀32(𝑥𝑥3
∗ − 𝑦𝑦2

∗) = 0,
𝑝𝑝3

∗𝑥𝑥3
∗ − 𝜔𝜔33𝑦𝑦3

∗ + 𝜀𝜀32(𝑦𝑦2
∗ − 𝑥𝑥3

∗) = 0,
𝑝𝑝3

∗𝑥𝑥3
∗ + 𝜔𝜔33𝑦𝑦2

∗ + 𝛼𝛼𝜀𝜀32(𝑥𝑥2
∗ − 𝑦𝑦3

∗) = 0.

                     (5) 

where 𝑝𝑝𝑖𝑖
∗ = 1 − 𝑥𝑥𝑖𝑖

∗2 − 𝑦𝑦𝑖𝑖
∗2 (𝑖𝑖 = 1,2,3).  The matrix form of (5) is the following: 

𝑀𝑀 �𝑢𝑢∗ = 𝟎𝟎                                                            (6) 

where 

                                             𝑀𝑀 � =

⎝

⎜⎜
⎛

𝑚𝑚11 −𝜔𝜔11 0 𝜀𝜀12 0 0
𝜔𝜔11 𝑚𝑚22 𝛼𝛼𝜀𝜀21 0 0 0

0
𝛼𝛼𝜀𝜀12

0
0

𝜀𝜀21
0
0
0

𝑚𝑚33
𝜔𝜔22

0
𝛼𝛼𝜀𝜀23

−𝜔𝜔22
𝑚𝑚44
𝜀𝜀32
0

0
𝛼𝛼𝜀𝜀32
𝑚𝑚55
𝜔𝜔33

0
0

−𝜔𝜔33
𝑚𝑚66 ⎠

⎟⎟
⎞

, 

where   𝑚𝑚11 = 1 − 𝑥𝑥1
∗2 − 𝑦𝑦1

∗2 − 𝜀𝜀12,  𝑚𝑚22 = 1 − 𝑥𝑥1
∗2 − 𝑦𝑦1

∗2 − 𝛼𝛼𝜀𝜀21,    𝑚𝑚33 = 1 − 𝑥𝑥2
∗2 − 𝑦𝑦2

∗2 −
𝜀𝜀21 − 𝜀𝜀23,     𝑚𝑚44 = 1 − 𝑥𝑥2

∗2 − 𝑦𝑦2
∗2 − 𝛼𝛼𝜀𝜀12 − 𝛼𝛼𝜀𝜀32,   𝑚𝑚55 = 1 − 𝑥𝑥3

∗2 − 𝑦𝑦3
∗2 − 𝜀𝜀32,     𝑚𝑚66 = 1 − 

𝑥𝑥3
∗2 − 𝑦𝑦3

∗2 − 𝛼𝛼𝜀𝜀23. Based on the basic algebraic knowledge, if 𝑀𝑀 �  is a nonsingular matrix, then 
system (6) has a unique trivial solution. Namely,  𝑢𝑢∗ = (0, 0, 0, 0, 0, 0)�.    However, when 
𝑥𝑥𝑖𝑖

∗ = 𝑦𝑦𝑖𝑖
∗ = 0,  matrix 𝑀𝑀 �  changes to M (=A+B). The proof is completed. 

Lemma 2  All solutions of system (2)  are  bounded.  

Proof  To prove the boundedness of the solutions in system (2), we construct a Lyapunov 
function     𝑉𝑉(𝑡𝑡) = ∑   12

3
𝑖𝑖=1  (𝑥𝑥𝑖𝑖

2 + 𝑦𝑦𝑖𝑖
2). Calculating the derivative of 𝑉𝑉(𝑡𝑡) through system (2) we 

get 

                                                                                         (5)

where The matrix form of (5) is the following:

                                                                                                                                                                                                (6)

where   
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Proof Assume that   𝑢𝑢∗ = (𝑥𝑥1
∗, 𝑦𝑦1

∗, ⋯ , 𝑥𝑥3
∗, 𝑦𝑦3

∗)�  is an equilibrium point of system (2), then we 
have the following algebraic equation 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑝𝑝1

∗𝑥𝑥1
∗ − 𝜔𝜔11𝑦𝑦1

∗ + 𝜀𝜀12(𝑦𝑦2
∗ − 𝑥𝑥1

∗) = 0,
𝑝𝑝1

∗𝑦𝑦1
∗ + 𝜔𝜔11𝑥𝑥1

∗ + 𝛼𝛼𝜀𝜀21(𝑥𝑥2
∗ − 𝑦𝑦1

∗) = 0,
𝑝𝑝2

∗𝑥𝑥2
∗ − 𝜔𝜔22𝑦𝑦2

∗ + 𝜀𝜀21(𝑦𝑦1
∗ − 𝑥𝑥2

∗) + 𝜀𝜀23(𝑦𝑦3
∗ − 𝑥𝑥2

∗) = 0,
𝑝𝑝2

∗𝑦𝑦2
∗ + 𝜔𝜔22𝑥𝑥2

∗ + 𝛼𝛼𝜀𝜀12(𝑥𝑥1
∗ − 𝑦𝑦2

∗) + 𝛼𝛼𝜀𝜀32(𝑥𝑥3
∗ − 𝑦𝑦2

∗) = 0,
𝑝𝑝3

∗𝑥𝑥3
∗ − 𝜔𝜔33𝑦𝑦3

∗ + 𝜀𝜀32(𝑦𝑦2
∗ − 𝑥𝑥3

∗) = 0,
𝑝𝑝3

∗𝑥𝑥3
∗ + 𝜔𝜔33𝑦𝑦2

∗ + 𝛼𝛼𝜀𝜀32(𝑥𝑥2
∗ − 𝑦𝑦3

∗) = 0.

                     (5) 

where 𝑝𝑝𝑖𝑖
∗ = 1 − 𝑥𝑥𝑖𝑖

∗2 − 𝑦𝑦𝑖𝑖
∗2 (𝑖𝑖 = 1,2,3).  The matrix form of (5) is the following: 

𝑀𝑀 �𝑢𝑢∗ = 𝟎𝟎                                                            (6) 

where 

                                             𝑀𝑀 � =

⎝

⎜⎜
⎛

𝑚𝑚11 −𝜔𝜔11 0 𝜀𝜀12 0 0
𝜔𝜔11 𝑚𝑚22 𝛼𝛼𝜀𝜀21 0 0 0

0
𝛼𝛼𝜀𝜀12

0
0

𝜀𝜀21
0
0
0

𝑚𝑚33
𝜔𝜔22

0
𝛼𝛼𝜀𝜀23

−𝜔𝜔22
𝑚𝑚44
𝜀𝜀32
0

0
𝛼𝛼𝜀𝜀32
𝑚𝑚55
𝜔𝜔33

0
0

−𝜔𝜔33
𝑚𝑚66 ⎠

⎟⎟
⎞

, 

where   𝑚𝑚11 = 1 − 𝑥𝑥1
∗2 − 𝑦𝑦1

∗2 − 𝜀𝜀12,  𝑚𝑚22 = 1 − 𝑥𝑥1
∗2 − 𝑦𝑦1

∗2 − 𝛼𝛼𝜀𝜀21,    𝑚𝑚33 = 1 − 𝑥𝑥2
∗2 − 𝑦𝑦2

∗2 −
𝜀𝜀21 − 𝜀𝜀23,     𝑚𝑚44 = 1 − 𝑥𝑥2

∗2 − 𝑦𝑦2
∗2 − 𝛼𝛼𝜀𝜀12 − 𝛼𝛼𝜀𝜀32,   𝑚𝑚55 = 1 − 𝑥𝑥3

∗2 − 𝑦𝑦3
∗2 − 𝜀𝜀32,     𝑚𝑚66 = 1 − 

𝑥𝑥3
∗2 − 𝑦𝑦3

∗2 − 𝛼𝛼𝜀𝜀23. Based on the basic algebraic knowledge, if 𝑀𝑀 �  is a nonsingular matrix, then 
system (6) has a unique trivial solution. Namely,  𝑢𝑢∗ = (0, 0, 0, 0, 0, 0)�.    However, when 
𝑥𝑥𝑖𝑖

∗ = 𝑦𝑦𝑖𝑖
∗ = 0,  matrix 𝑀𝑀 �  changes to M (=A+B). The proof is completed. 

Lemma 2  All solutions of system (2)  are  bounded.  

Proof  To prove the boundedness of the solutions in system (2), we construct a Lyapunov 
function     𝑉𝑉(𝑡𝑡) = ∑   12

3
𝑖𝑖=1  (𝑥𝑥𝑖𝑖

2 + 𝑦𝑦𝑖𝑖
2). Calculating the derivative of 𝑉𝑉(𝑡𝑡) through system (2) we 

get 

               

               

Based on the basic algebraic knowledge, if  is a nonsingular matrix, then system (6) has a unique trivial 

solution. Namely,     However, when   matrix  changes to M (=A+B). 
The proof is completed.

Lemma 2  All solutions of system (2)  are  bounded. 

Proof  To prove the boundedness of the solutions in system (2), we construct a Lyapunov function     

( ) = ∑    + . Calculating the derivative of V(t) through system (2) we get
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      ( ) | ( ) =   ( + ) 

≤ ∑  ( | | + | | ) + ∑ − ∑  ( + 2 + )        (7) 

where , and  are some constants. Obviously, when      

are higher order infinity than ,  and    respectively. Therefore, there exists suitably large    such 

that  as  . This means that all solutions of system (2) are bounded.

OSCILLATION OF THE SOLUTIONS
Theorem 1 Assume that zero is the unique equilibrium point of system (2) (or(3)) for selecting parameter 

values.  Let  and be characteristic values of matrix A and B, respectively. If 

the real part of   and   are negative, then the trivial solution is stable. If there exists some  

  with   or     with  ,  then the unique 

equilibrium point of system (3) is unstable. System (3) generates an oscillatory solution.

Proof According to the basic time delay differential equation theory, If the real part of   and   
are negative, then the trivial solution is stable. Obviously, if the trivial solution of system (4) is unstable, then 
the trivial solution of system (3) is also unstable. Therefore, we only need to prove the instability of the trivial 
solution of system (4). Consider an auxiliary system of (4) as follows:

                                                 (8)

where   and 

. If the trivial solution of system (8)  is unstable,  then the trivial solution of system 

(4)  is unstable according to the property of delayed differential equation [26]. So we only need to show the 
instability of the trivial solution of system (8).

Since  and are characteristic values of matrix A and B, respectively.  Then 
the characteristic equation corresponding to system (8) is the following:

                                                                                                                                   (9)

So, we are led to an investigation of the nature of the roots for some    

                                                                                                                                                                  (10)

System (10) is a transcendental equation which is hard to find all solutions for the equation. However, we 
show that there exists a positive real part eigenvalue of equation (10) under the assumption of Theorem 1. If 

  with   hold, let    ,   
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Separating the real and imaginary parts from equation (10), we have

                                                                                                 (11)

                                                                                                 (12)

We show that equation (10) has a positive real part root. Let

                                                                                     (13)

Obviously,  is a continuous function of   Noting that  . This means that there exists

 such that .  

Since       as  ,  so there exists a suitably large  such that 

  By means of the Intermediate 
Value Theorem, there exists a      such that .  This means that the characteristic value 

 has a positive real part. Thus, the trivial solution of system (8) is unstable, implying that the trivial solution 
of system (3) is unstable. Since all solutions of system (3) are bounded, the instability of the trivial solution 
and the boundedness of the solutions will force system (3) to generate an oscillatory solution. For the case of   

 with ,  equation (8) will have a positive root, the proof is similar and we 
omit it.

Theorem 2  Assume that  zero is the unique equilibrium point of system (3) for selecting parameter

values. Let    . If the following 
inequality holds:

                                                                                                                                                                                            (14)

then system (3) has an oscillatory solution.

Proof We still prove that the trivial solution of system (8) is unstable. Let  , from the 
definition of p and q we have

                                                                                                                                                   (15)

Consider the scalar differential equation

                                                                                                                                                     (16)

According to the comparison theorem of differential equation, we have    .  For equation (16), the 
characteristic equation associated with (16) is given by

                                                                                                                                                                                  (17)

We claim that there exists a positive characteristic root of equation (17). Indeed, let    

Then  is a continuous function of  From condition (14), we have  On the other 
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hand, there exists a suitably large positive   say    such that . Again from 

the Intermediate Value Theorem, there exists a such that    In other words,  is a 
positive characteristic root of equation (17), implying that the trivial solution of equation (16) is unstable. Since  

 , this means that the trivial solution of equation (15), thus the system (4) is unstable. It suggested 
that system (2) (or (3)) has an oscillatory solution.

SIMULATION RESULTS

The simulation is based on the system (2),   first the parameters are selected as follows:

  ,    

 time delays      Then the 

characteristic values of matrix A are   , , 0 , the 

characteristic values of matrix B are  . Since all characteristic value of matrix 

B are real numbers, so  = , and  , the conditions of Theorem 1 

are satisfied. There exists an oscillatory solution for system (2) (see Fig.1).  In order to see the effect of parameters 

 we set  ,    the other parameters are the same as in figure 1, 

we see that the oscillation is maintained, but the oscillatory frequencies are different (see Fig. 2). Then we 

increase time delays as       The other 

parameters are the same as in figure 2, we see that the oscillatory behavior is still maintained (see Fig. 3). Then we 

change the parameters as  ,  ;   

   Then  p=4.49, q=0.03. Therefore, p+q , the conditions of 

Theorem 2 are satisfied. When the time delays are       

 and       ,  

respectively, there exist oscillatory solutions (see Fig. 4 and Fig. 5).  We pointed out that our criterion only is a 
sufficient condition from our simulation.

CONCLUSION

In this paper, we have discussed the oscillatory behavior of the solutions for a coupled Stuart-Landau oscillator 
model with delays. Based on mathematical analysis method, we provided some sufficient conditions to guarantee 
the existence of oscillatory solutions.  Some simulations are provided to indicate the correction of the criteria.
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