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Introduction

Musical tuning systems determine the exact frequencies of 
notes and intervals. Different cultures developed distinct 
tuning approaches based on mathematical ratios and 
acoustic principles. This paper examines European tuning 
systems – from ancient Pythagorean tuning through just 
intonation, meantone temperaments, to modern 12-tone 
equal temperament – in comparison with traditional Chinese 
tuning methods like sanfen sunyi (the “three-part subtracting 
and adding” cycle of fifths) and the pentatonic scale. We 
explore the mathematical foundations (frequency ratios, 
logarithmic pitch scales, interval calculations) and scientific 
principles (acoustics, resonance, harmonic overtones) 
underlying these systems and provide tables and worked 
examples to quantify interval sizes and trade-offs. The goal 
is a deep analytical view of how tuning is structured and 
understood in both European and Chinese musical science, 
supported by historical and theoretical evidence.

Mathematical Foundations of Tuning

Frequency Ratios and Intervals: At the core of tuning theory 
is the idea that musical intervals correspond to frequency 
ratios of small integers. The simplest example is the octave, 
a doubling of frequency with ratio 2:1. The next most 

fundamental interval is the perfect fifth with ratio 3:2[1]. 
Pythagorean tradition (both European and Chinese) chose 
the 3:2 fifth as the “generator” for scales because it is the 
next simplest ratio after the octave, corresponding to the 
third harmonic of a string (hence a very consonant interval)
[2]. In any tuning system based on pure intervals, combining 
intervals means multiplying their frequency ratios. For 
example, a perfect fifth (3:2) above a middle C (say 256 Hz) 
gives G at 256 × 3/2 = 384 Hz; a perfect fourth (4:3) above 
that G returns to the octave C: 384 × 4/3 = 512 Hz, exactly 
double 256 Hz. This demonstrates how 3:2 and 4:3 (a fifth up 
and a fourth up) complement each other to span an octave 
(3/2 × 4/3 = 2) in a pure ratio system[3].

Logarithmic Pitch Scaling (Cents): 

Human perception of pitch is approximately logarithmic, 
making it mathematically convenient to measure intervals 
on a logarithmic scale. Modern tunings use the cent unit: 1 
octave = 1200 cents by definition, so one equal-tempered 
semitone is 100¢[3][4]. The size in cents of any interval with 
frequency ratio r is given by:

C = 1200 × log₂(r)

For example, a perfect fifth (r = 3/2) is:
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C = 1200 × log₂(3/2) ≈ 701.96 cents, which is very close to 
702 cents.

In twelve-tone equal temperament (12-TET), the octave is 
divided into 12 exactly equal semitones of 100 cents each. 
The frequency of the nth semitone above a reference pitch 
f₀ is given by:

fₙ = f₀ × 2 n/12

Here, 21/12 ≈ 1.059463 is the constant ratio between adjacent 
semitones[4]. This exponential spacing means pitch 
relationships become additive in cents (or semitone units), 
which greatly simplifies modulation (changing keys). 

The table 1 below compares three tuning systems—Equal 
Temperament, Pythagorean Tuning, and Just Intonation—for 
the C major scale, showing both frequencies (Hz) and pitch 
positions in cents relative to C.

Table 1. Equal Temperament, Pythagorean Tuning, and Just Intonation

Note Equal 
Temperament (Hz)

Equal 
Temperament (¢)

Pythagorean 
(Hz)

Pythagorean 
(¢)

Just Intonation 
(Hz)

Just Intonation 
(¢)

C4 261.626 0 261.626 0.0 261.626 0.0
D4 293.665 200 294.329 203.91 294.329 203.91
E4 329.628 400 331.12 407.82 327.032 386.31
F4 349.228 500 348.834 498.04 348.834 498.04
G4 391.995 700 392.438 701.96 392.438 701.96
A4 440.0 900 441.493 905.87 436.043 884.36
B4 493.883 1100 496.68 1109.78 490.548 1088.27
C5 523.251 1200 523.251 1200.0 523.251 1200.0

Worked Examples

Perfect fifth (pure): r = 3⁄2 → C = 1200 × log₂(3⁄2) ≈ •	
701.96¢.

Perfect fifth (12-TET): r = 2⁽⁷•	 ⁄¹²⁾ ≈ 1.4983 → 700.0¢.

Major third (pure): r = 5⁄4 = 1.25 → ≈ 386.3¢.•	

Major third (12-TET): r = 2⁽⁴•	 ⁄¹²⁾ = 2¹⁄³ ≈ 1.2599 → 
400.0¢.

The equal-tempered perfect fifth is 700.0¢ (ratio 2⁽⁷⁄¹²⁾ 
≈ 1.4983), slightly flatter than the pure 3:2 ≈ 701.96¢; the 
equal-tempered major third is 400.0¢ (ratio 2⁽⁴⁄¹²⁾ = 2¹⁄³ ≈ 
1.2599), slightly sharper than pure 5:4 ≈ 386.3¢.

Interval Computation
In ratio-based tuning, intervals are calculated by multiplying 
or dividing known frequency ratios. For example, a major 
third in just intonation has a ratio of 5:4, meaning its 
frequency is 1.25 times that of the root note[5]. Similarly, a 
minor third has a ratio of 6:5, or 1.2 times the root frequency. 
To combine intervals, the ratios are multiplied. For instance, 
multiplying a whole tone (9:8) by another whole tone (9:8) 
gives:

(9/8) × (9/8) = 81/64 ≈ 1.2656

This result corresponds to a Pythagorean major third, which 
is approximately 407.8 cents.

In logarithmic terms, interval sizes can be added or subtracted 
directly in cents. For example:

Perfect fifth (≈702¢) − Perfect fourth (≈498¢) = Major second 
(≈204¢)

Using cents in this way allows for straightforward 
comparison of interval sizes across different tuning systems. 

This approach will be applied in our analysis to compare 
European and Chinese tunings.

Acoustic Principles and Harmonic 
Resonance
Consonant intervals arise from the harmonic overtone series: 
a vibrating string or air column produces partials at integer 
multiples of a fundamental frequency f0[6].

Example: If the fundamental is C₂ at f₀ = 100 Hz, then:

1st harmonic: f₁ = 1 × f₀ = 100 Hz (C₂)

2nd harmonic: f₂ = 2 × f₀ = 200 Hz (C₃)

3rd harmonic: f₃ = 3 × f₀ = 300 Hz (G₃)

4th harmonic: f₄ = 4 × f₀ = 400 Hz (C₄)

5th harmonic: f₅ ≈ 5 × f₀ = 500 Hz (E₄)[7]

These naturally occurring harmonics correspond to simple 
frequency ratios:

Octave: 2:1

Perfect fifth: 3:2

Perfect fourth: 4:3

Major third: 5:4

Small-integer ratios sound smooth because two waveforms 
realign periodically. In a perfect fifth 3:2 (e.g., 200 Hz vs. 300 
Hz), the periods are T₁ = 1/200 = 0.005 s and T₂ = 1/300 
≈ 0.00333 s; they coincide every 0.01 s (LCM(T₁, T₂) = 
0.01s). The tones also share harmonics—here, 600 Hz (the 
3rd harmonic of 200 Hz and the 2nd of 300 Hz)—which 
reinforces the blend and minimizes beating [8]. By contrast, 
intervals with complex or inharmonic ratios do not align 
periodically; their waveforms never fully sync up, leading to 
audible beats or roughness.
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Modern acoustics confirms that simple frequency ratios 
underpin consonance[9]. Notes related by ratios like 2:1, 3:2, 
4:3, 5:4 align with overlapping overtones, creating stability. 
Psychoacoustic phenomena, such as combination tones, 
enhance this effect—for example, a perfect fifth (C–G) may 
produce a difference tone an octave below the lower note, 
reinforcing the harmony[14]. In contrast, Dissonant spans 
such as the tritone generate combination tones that fail to 
integrate harmonicall.

Historically, tuning systems have leveraged these facts. Just 
intonation and Pythagorean tuning preserve selected pure 
ratios to maximize consonance in key intervals, whereas 
tempered systems deliberately nudge those ratios to trade a 
bit of purity for the ability to modulate freely among keys.

Resonance, Instrument Physics, and 
European Tuning Systems
Musical instruments are designed around natural resonances. 
A string or air column tuned to frequency f will resonate at f 
and its harmonics 2f, 3f, 4f, etc. Thus, when two notes are in a 
pure ratio, one can excite resonances in another instrument 
tuned to a harmonic of it. For example, if a piano’s A string 
(220 Hz) is struck, a properly tuned E (a fifth above, ~330 
Hz) on another instrument might resonate subtly, because 
330 Hz is the 3rd harmonic of 110 Hz (half of 220 Hz) and 
aligns with the overtone series of A.

A piano string A have: fA = 220 Hz

A note E a perfect fifth above has: fE = (3/2) × 220 = 330 Hz

On another instrument, 330 Hz is the 3rd harmonic of: fbase = 
(1/2) × 220 = 110 Hz

In equal temperament, the perfect fifth is slightly narrower 
than pure: r₅(ET) = 2⁽⁷⁄¹²⁾ ≈ 1.4983 (700.0¢) versus the pure 
3⁄2 = 1.5 (≈701.96¢). This small misalignment weakens 
sympathetic resonance slightly and introduces gentle 
beating—one reason ensembles with flexible pitch adjust by 
ear. Likewise, string quartets often lower their major thirds 
from the ET ratio 2⁽⁴⁄¹²⁾ = 2¹⁄³ ≈ 1.2599 (400.0¢) toward 
the pure 5⁄4 = 1.25 (≈386.3¢) in cadences to maximize 
consonance.

In summary, the scientific ideal in tuning is to match 
intervals to harmonic-series ratios to maximize consonance 
and resonance. Constraints of musical practice, however, 
sometimes require detuning those pure ratios – and the 
contrast between European and Chinese tuning histories 
largely centers on how each tradition managed this 
consonance-versus-flexibility tradeoff.

European Tuning Systems: From Pure to Tempered

European music theory has evolved through several tuning 
systems, each balancing pure harmonies with the ability to 
play in multiple keys. Pythagorean Tuning (3-limit tuning) 
uses only the prime factors 2 and 3, stacking pure fifths (3:2) 
and adjusting octaves (2:1) to bring pitches into a single 
octave range[1][2]. For example, starting from C:

G = C × (3/2)

D = G × (3/2) = C × (9/8)

A = D × (3/2) = C × (27/16) ...

Continuing this process yields a 7-note diatonic scale built 
from pure fifths.

Pythagorean tuning produces perfectly pure fifths and 
fourths: 

Perfect fifth: 3/2 = 1.5 → 702.0¢

Perfect fourth: 4/3 ≈ 1.3333 → 498.0¢

Whole tone: 9/8 = 1.125 → 203.9¢

However, its major thirds and sixths are sharper than just 
intonation values:

Pythagorean major third: 81/64 ≈ 1.265625 → 407.8¢ (vs. 
Just major third: 5/4 = 1.25 → 386.3¢) and the Difference: 
407.8¢ – 386.3¢ ≈ +21.5¢

Pythagorean major sixth: 27/16 ≈ 1.6875 → 905.9¢ (vs. Just 
major sixth: 5/3 ≈ 1.6667 → 884.4¢) and the Difference: 
905.9¢ – 884.4¢ ≈ +21.5¢

The sharpening comes from stacking fifths to form a third 
instead of using the harmonic 5th partial. In medieval 
practice, such thirds were treated as dissonances.

The Pythagorean comma arises because twelve fifths 
overshoot seven octaves: (3⁄2)¹² ≈ 129.7463, while 2⁷ = 
128 → ratio difference = (3/2)12 ÷ 27   ≈ 1.01364 → 23.46¢. 
To close the circle, one “wolf fifth” is narrowed heavily (often 
≈680¢). This forces one interval, called the ‘wolf fifth’, to be 
narrowed significantly—often to about 680¢—to close the 
circle of fifths. The resulting 12 semitones are unequal: there 
are seven smaller diatonic semitones (~90.22¢) and five 
larger chromatic semitones (~113.68¢)[1][3][4].

Compared with 12TET:

Minor second: Pythagorean ≈ 90.22¢ vs. 12-TET = 100¢

Major second: Pythagorean ≈ 203.91¢ vs. 12-TET = 200¢

Major third: Pythagorean ≈ 407.82¢ vs. 12-TET = 400¢

Perfect fifth: Pythagorean ≈ 701.96¢ vs. 12-TET = 700¢

Tritone discrepancy:

Augmented fourth: 729/512 ≈ 1.42578 → 611.73¢

Diminished fifth: 1024/729 ≈ 1.40466 → 588.27¢

Difference: 611.73¢ – 588.27¢ ≈ 23.46¢ (Pythagorean 
comma)

In 12-TET, the tritone is fixed at exactly 600¢, eliminating the 
split.

Figure 1 illustrates the difference: equal temperament has 
uniformly 100¢ semitones, whereas Pythagorean tuning 
alternates smaller and larger step sizes. Despite these 
issues, Pythagorean tuning was satisfactory for medieval 
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monophonic and modal music. Pure fifths gave melodies a 
resonant hollowness, and since harmony (chords) was not 
yet complex, the wolf interval could be avoided by staying in 
certain keys. Melodically, the unequal step sizes produced by 
3:2 cycles lent medieval modes a distinctive character. When 
polyphonic harmony expanded in the Renaissance to treat 
thirds as consonances, the sharp Pythagorean third became 
problematic[5], leading to new tuning strategies.

Figure 1. Comparison of Pythagorean tuning vs. 12-tone 
equal-tempered intervals (one octave, C to C). The horizontal 
axis shows the scale notes in the key of C major; the vertical 
axis shows interval size in cents (1200¢ = one octave). The 
black line indicates the equal-tempered scale (each semitone 
= 100¢). Green points show the Pythagorean tuning intervals 

based on pure fifths.

Compared with 12-tone equal temperament (12-TET), which 
fixes every semitone at exactly 100¢, Pythagorean tuning 
has more variation. Minor seconds (~90¢) are noticeably 
smaller, major seconds (~204¢) slightly larger, and the major 
third (~408¢) is sharper than the equal-tempered 400¢. 
The perfect fifth (~702¢) remains nearly pure, only about 
2¢ sharper than in 12-TET. The largest difference occurs at 
the tritone. In 12-TET, the tritone is a single 600¢ interval. 
In Pythagorean tuning, it splits into an augmented fourth 
(≈611.7¢) and a diminished fifth (≈588.3¢), differing by 
the Pythagorean comma (~23.5¢)[11]. Equal temperament 
merges F♯ and G♭ into one pitch, eliminating the comma 
difference. Other intervals differ by only about 2–10¢, small 
enough to be acceptable in most performance contexts. This 
explains why 12-TET became a successful compromise: it 
tempers all intervals slightly so that music can be played in 
all keys without intolerable dissonance.

Just Intonation (5-limit tuning)
Just intonation incorporates not only the pure perfect fifth 
(3:2) but also the pure major third (5:4), along with related 
intervals such as the minor third (6:5) and major sixth (5:3), 
all derived from the harmonic series[7][8]. In a just diatonic 
scale—described by Gioseffo Zarlino in 1558, though its 
origins go back to Ptolemy—the major triads are tuned 
perfectly. For example, in a C major chord (C–E–G):

C:E = 5:4 → major third = 386.3¢ (pure)

C:G = 3:2 → perfect fifth = 702.0¢ (pure)

These ratios yield extremely smooth consonances. The just 
major third at 386.3¢ produces far less beating than the 
Pythagorean major third at 407.8¢.

However, the system cannot keep all fifths at the pure 3:2 
ratio if the major thirds are set at 5:4. In one just-tuned C 
scale, for example:

A = 5:3 (major sixth above C)

D = 9:8 (major second above C)

Fifth D:A = 40:27 → ≈ 680¢ (narrow, poor consonance)

This problem arises because introducing pure thirds creates 
additional commas, most notably the syntonic comma:

Syntonic comma = 81:64 vs. 5:4 → ≈ 21.51¢

To preserve just major thirds, some fifths must be narrowed 
by this comma, making them less consonant.

In practice, just intonation works beautifully within a single 
key but becomes unstable if the music changes key or uses 
chords outside the home tonality. Each key requires its 
own adjustments—either extra pitches for enharmonic 
equivalents or physical retuning—which is impractical for 
fixed-pitch instruments across many keys. 

Meantone Temperament
During the Renaissance, meantone temperaments, especially 
quarter-comma meantone, became widely used. The term 
‘meantone’ refers to tuning each whole tone so that it 
lies midway between pure intervals. In quarter-comma 
meantone, each perfect fifth is flattened by one quarter of the 
syntonic comma—about (1/4 × 21.51¢ ≈ 5.38¢)—resulting 
in a fifth measuring roughly 696.6¢ instead of the pure 702¢. 
This adjustment produces a major third of exactly 386.3¢, 
which corresponds precisely to the pure 5:4 ratio, because it 
is formed from two tempered whole tones of approximately 
193.16¢ each[12].

This tuning created exceptionally consonant triads, perfectly 
suited to the smoother harmonic language of the 16th and 
17th centuries. However, the trade-off was that traveling far 
around the circle of fifths introduced an even more severe 
‘wolf’ interval than in Pythagorean tuning. Depending on 
how the temperament was arranged, the wolf fifth could be 
as large as 737¢ or as small as 648¢, making remote keys 
practically unusable[10]. Furthermore, enharmonic notes 
such as G♯ and A♭ were tuned differently, so they were not 
interchangeable. For example, G♯ tuned as the major third 
above E♭ could differ noticeably from A♭ derived from a 
chain of fifths starting on C. To address this, some keyboard 
instruments were built with split keys to provide separate 
pitches for such enharmonic equivalents.

Meantone temperament represented an effective compromise 
in the late Renaissance and early Baroque periods for music 
that did not modulate far from its home key. It maintained 
the purity of the most frequently used intervals — fifths and 
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thirds — while sacrificing the usability of distant keys. This 
balance between consonance in common harmonies and 
dissonance in remote ones reflects the musical priorities of 
its time.

Equal Temperament (12-FET)
By the late 18th century, well temperaments allowed 
performance in all keys (with differing key colors). Through 
the 19th–20th centuries, 12tone equal temperament (12TET) 
became the standard that makes all keys equivalent[11]. In 
12TET each semitone is 100¢, and only the octave is pure. 
The perfect fifth is 2⁽⁷⁄¹²⁾ ≈ 1.4983 → 700.0¢ (≈1.96¢ flatter 
than the pure 3:2 ≈ 701.96¢); the major third is 2⁽⁴⁄¹²⁾ = 2¹⁄³ 
≈ 1.2599 → 400.0¢ (≈13.69¢ sharper than pure 5:4 ≈ 386.3¢). 
These small, even offsets remove wolf intervals and enable 
uniform modulation. Historically, the mathematics of equal 
division of the octave was worked out independently by Zhu 
Zaiyu (1584) and Simon Stevin (1585); universal adoption 
followed much later with modern instrument making and 
ensemble practice[12].

In equal temperament, intervals are defined by powers of 2, 
divided into 12 equal semitones.

Perfect fifth(12-TET):   27/12 ≈ 1.4983 → 700.0¢ (pure = 3⁄2 
→ 701.96¢)

Major third(12-TET):    24/12 = 21/3 ≈ 1.2599 → 400¢ (pure = 
5⁄4 → 386.31¢)

These values are irrational numbers, meaning the intervals no 
longer correspond to small whole-number ratios — a sharp 
break from Pythagorean and just intonation systems[14].

Because 12TET intervals are powers of 2 split into 12 equal 
steps, their ratios are irrational and no longer match simple 
smallinteger relationships. As a result, partials do not align 
perfectly with the harmonic series. This produces a mild 
beating in chords that is absent in pure just intonation[13]. 
Over time, listeners have adapted so that equal-tempered 
intervals still sound consonant, though with a subtly different 
tone color. Crucially, equal temperament was the first 
systematic tuning to allow free modulation and the use of 
all 24 major and minor keys on a single instrument without 
retuning. This consistency led it to become the dominant 
Western tuning system since the 18th century[11].

Table 2. Comparison of Equal Temperament vs. Pure Tuning

Interval Equal Temperament (Ratio) Pure Tuning (Ratio) Difference
Perfect Fifth 27/12 ≈ 1.4983 3/2 = 1.5 ≈ -0.0017
Major Third 21/3 ≈ 1.2599 5/4 = 1.25 ≈ +0.0099

Summary of European Systems
Early European tuning began with Pythagorean practice, 
which prioritizes pure 3:2 fifths (≈ 701.96¢) but yields 
wide major thirds at 81:64 (≈ 407.8¢); the accumulation of 
pure fifths introduces the Pythagorean comma (≈ 23.46¢), 
producing wolf intervals in certain keys. As harmonic writing 
expanded, 5-limit just intonation sought purer sonorities 
by using 5:4 major thirds (≈ 386.31¢) alongside 3:2 fifths, 
but the syntonic comma (81:80 ≈ 21.51¢) made fixed-key 
usage and modulation difficult. Meantone temperaments 
then tempered the fifths to favor pure thirds—most 
famously, quarter-comma meantone narrows each fifth by 
≈ 5.38¢ to about 696.6¢—which improves local consonance 
while degrading remote keys. Ultimately, 12-tone equal 
temperament divides the octave into equal semitones (21/12 
≈ 1.059463, set to 100¢ exactly); in this system the fifth 
is 700.0¢ and the major third is 400.0¢, eliminating wolf 
intervals, aligning enharmonic spellings, and creating key 
equivalence around the circle of fifths. The arc from small-
integer ratios (3/2, 5/4) to the irrational roots of two 
reflects a conscious trade-off—recognized by the nineteenth 
century—exchanging a measure of pure consonance for the 
versatility required by frequent modulation and complex 
harmonic progressions[15][1].

Traditional Chinese Tuning (十二律) & 
Sanfen Sunyi

Chinese music theory developed its own framework for 
pitch, rooted in nature and philosophy, yet mathematically 

similar to the Western Pythagorean approach. The ancient 
system centers on the 十二律 (shí’èr lǜ) or 12 lü pitch pipes 
– twelve fundamental pitches analogous to the chromatic 
scale. According to tradition, these were generated by the 
scholar Ling Lun (c. 3rd millennium BCE, mythology) and 
later formalized in texts like the Lüshi Chunqiu (c. 239 BCE).

The method for generating the 12 lü is called 三分損益 (sānfēn 
sǔnyì), meaning “three-part subtracting and adding,” which 
is mathematically equivalent to the cycle of fifths. Starting 
from the fundamental pitch (the first lü, Huángzhōng 黃鐘 
or ‘Yellow Bell’): 

• Subtract one third of the tube length → length = (2/3) 
× original → frequency × (3/2) → perfect fifth up. • Add 
one third of the tube length → length = (4/3) × original → 
frequency × (3/4) → perfect fourth down[14].

By alternating these operations (up a fifth, down a fourth 
to stay within an octave), Chinese theorists produced a 
sequence of 12 notes, identical in logic to Pythagorean tuning 
but expressed in pipe lengths. This is exactly the Pythagorean 
tuning logic expressed in terms of pipe lengths. The names 
of the 12 lü in order of generation (fifths) are recorded, for 
example: Huángzhōng (1), Línzhōng (a fifth up), Tàicù, Nánlǚ, 
Gǔxī, Yíngzhōng, Ruìbīn, Dàlǚ, Yìzé, Jiāzhōng, Wúyì, Zhōnglǚ 
(12th)[15]. When arranged in order of pitch within one 
octave, these correspond to a chromatic-like scale[1]. Early 
Chinese texts explicitly note the cosmological significance of 
completing the 12-tone cycle, associating the 12 lü with the 
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months of the year, directions, etc., implying a full circle of 
fifths had mystical import[2].

Like the Pythagoreans, Chinese scholars discovered that 
after generating 12 fifths, one does not exactly return to a 
perfect octave. The 13th pitch is slightly higher than a perfect 
octave above the first. The Han Dynasty scholar Jing Fang (京
房, 78–37 BCE) extended the cycle to 60 fifths, searching for 
a closer unison return[3].

He found that after 53 fifths you nearly return to the 
starting note (within about 0.01% frequency difference): 
(3/2)53 ≈ 231

Error ≈ 3.6¢

In modern terms, Jing Fang recognized that 53 pure fifths ≈ 
31 octaves. Jing Fang poetically called this ‘the difference of 
one day[5].’ It is astonishing that Chinese theory understood 
the 53-fifth near-equivalence two millennia before 
Europeans (Nicholas Mercator in 1660s) did[4]. This level 
of mathematical insight shows the sophistication of ancient 
Chinese acoustical science.

Twelve Lü and the Pentatonic Scale
Traditional Chinese music centers on the pentatonic 
scale—a five-note subset of the 12 lü (and of the seven-
note system with added bianyin 變音). In Gōng mode the 
degrees correspond to do–re–mi–sol–la. If Huángzhōng is 
aligned with Western C, a common pentatonic is C–D–E–G–A 

(omitting F and B), obtained by the cycle of fifths—C → G → 
D → A → E—with octave reductions as needed. Thus, the C 
major pentatonic is embedded within the 12 lü generated by 
sanfen sunyi [3].

Chinese practice traditionally deemphasized the leading-
tone seventh and the fourth, so the pentatonic conveniently 
avoids the most dissonant Pythagorean spans (major 
seventh, tritone). The major third (C–E) remains; in the 12-
lü framework it is the Pythagorean 81:64 (≈407.8¢), brighter 
than a just 5:4 third. Singers may shade it slightly lower 
toward 5:4, and instrumental contexts can treat any beating 
as a familiar color rather than a defect[5]. Because Chinese 
music is not triad-based, a “major third” functions chiefly as a 
melodic step, not a chordal consonance requiring purity[4].

Comparative Analysis of Tuning Systems 

By the Qing Dynasty and the European Enlightenment (18th–
19th centuries), cross-cultural exchange in music theory 
began to recognize the connections between these tuning 
approaches. Both traditions confronted the Pythagorean 
comma and ultimately converged on equal temperament. 
This section compares interval sizes and consonance 
across just intonation, Pythagorean tuning, and 12-tone 
equal temperament (12-TET), using C as the reference; just 
and Pythagorean are shown as ratios, and cents (¢) give 
logarithmic sizes.

Table 3. Intervals from C in just intonation, Pythagorean tuning, and equal temperament. Ratios are given for just and 
Pythagorean; cent values (¢) indicate size on a logarithmic scale. (The “same” label indicates intervals that coincide between 
just and Pythagorean for those cases not involving the prime 5.)

Interval (C–*) Just Intonation (ratio, cents) Pythagorean (ratio, cents) Equal Temperament (cents)
Major second (C–D) 9:8 = 1.125 (203.9¢) 9:8 = 1.125 (203.9¢) (same) 200.0¢
Major third (C–E) 5:4 = 1.25 (386.3¢) 81:64 ≈ 1.2656 (407.8¢) 400.0¢
Perfect fourth (C–F) 4:3 ≈ 1.3333 (498.0¢) 4:3 = 1.3333 (498.0¢) (same) 500.0¢
Perfect fifth (C–G) 3:2 = 1.5 (701.96¢) 3:2 = 1.5 (701.96¢) (same) 700.0¢
Major sixth (C–A) 5:3 ≈ 1.6667 (884.4¢) 27:16 = 1.6875 (905.9¢) 900.0¢
Octave (C–C’) 2:1 = 2.0 (1200¢) 2:1 = 2.0 (1200¢) 1200¢

Note: In Pythagorean tuning, the major second and perfect fourth above are the same as in just intonation (since those do not 
involve the prime 5), whereas the intervals involving the 5th harmonic (major third, major sixth) differ significantly. Equal 
temperament “splits the difference” in those cases, tempering the pure just and Pythagorean intervals to a middle value[5][6].

The Chinese 12-lü corresponds to the Pythagorean column 
above: core melodic intervals like the fifth (3:2) and fourth 
(4:3) are pure. The pentatonic’s major third (C–E) appears 
as 81:64 (≈407.8¢)—somewhat wide—yet singers often 
shade it lower toward 5:4 for sweetness; and because 
triadic harmony is not central, a wide third is typically less 
problematic.

Pythagorean systems can produce wolf intervals and bright 
thirds, spurring new temperaments in Europe. In China, 
heavy pentatonic use largely sidestepped these spans; with 
broader adoption of seven-note scales and Western influence 
in the 19th–20th centuries, 12-TET became standard. Notably, 

Zhu Zaiyu (1584) had already computed an equal-tempered 
division closely matching the later European adoption [7].

Resonance and Timbre 
Instrument design and practice reinforced these tunings. 
In Europe, the violin family (G–D–A–E) favors fifths, and 
flexible-pitch performers adjust intonation (e.g., narrowing 
major thirds in chords). In China, lutes such as pipa/ruan 
were historically fretted to 12-lü (many modern versions 
approximate 12-TET), and the guqin’s harmonic markers 
(3/2, 4/3, 5/4) reflect overtone awareness. 

Both traditions also engaged in direct experimentation. In 
the 11th century, the Chinese polymath Shen Kuo studied 
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how temperature affected the pitch of lute strings and 
pipe lengths. In the 17th century, the French scholar Marin 
Mersenne precisely measured string frequencies and 
harmonics, laying foundations for modern acoustics. By 
the 19th century, European scientists such as Helmholtz 
explained earlier tuning practices through overtone beats 
and consonance theory.

Conclusion
European and Chinese tuning systems demonstrate a parallel 
development in music science. Both addressed the same 
mathematical problem of dividing the octave and preserving 
consonance, yet each prioritized intervals according to 
musical aesthetics. European practice gradually emphasized 
the ability to play in all keys, favoring even spacing over pure 
ratios, whereas Chinese music for centuries retained pure 
fifths and a pentatonic framework that reduced the need 
for tempering. Ultimately, both traditions adopted 12 tone 
equal temperament, showing that the tuning problem and its 
solution are universal. Musicologists view these systems not 
as separate worlds but as different expressions of the same 
idea: the interplay of mathematics, physics, and art in the 
pursuit of musical harmony.
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