American Research Journal of Physics

Volume 11, Issue 1, 1-7 Pages
Research Article | Open Access
ISSN (Online)- 2380-5714

DOI : 10.21694/2380-5714.25001

Mathematical and Scientific Analysis of European and Chinese

Tuning Systems
Matthew Ho

East Brunswick High School.

ABSTRACT

This paper presents a comparative mathematical and scientific analysis of European and Chinese tuning systems, tracing
how cultures approached the problem of dividing the octave and balancing consonance with flexibility. Using frequency
ratios and logarithmic pitch units (cents), it quantifies interval sizes in Pythagorean tuning, just intonation (5-limit),
meantone temperaments, and modern 12-tone equal temperament (12-TET), with worked examples and tables to show
the trade-offs among pure intervals, “wolf” intervals, and modulatory freedom. The study then examines traditional
Chinese theory of the +—1# (twelve lii) and the = /34835 (cycle of fifths) method, its pentatonic emphasis, and Jing
Fang’s near-equivalence of 53 fifths to 31 octaves—revealing deep historical parallels with Western developments.
Acoustical foundations (harmonic overtones, resonance, beating) explain why small-integer ratios sound consonant and
how tempering subtly detunes them to enable practical performance across keys. The analysis concludes that, despite
differing musical priorities—European polyphony versus Chinese pentatonic practice—both traditions ultimately
converged on equal temperament as a universal compromise between purity and versatility, highlighting the shared
interplay of mathematics, physics, and musical aesthetics.

KEYWORDS: Tuning systems, Pythagorean, just intonation, meantone, equal temperament, twelve Iii, sanfen sunyi,

cents, consonance, resonance.

INTRODUCTION

Musical tuning systems determine the exact frequencies of
notes and intervals. Different cultures developed distinct
tuning approaches based on mathematical ratios and
acoustic principles. This paper examines European tuning
systems - from ancient Pythagorean tuning through just
intonation, meantone temperaments, to modern 12-tone
equal temperament - in comparison with traditional Chinese
tuning methods like sanfen sunyi (the “three-part subtracting
and adding” cycle of fifths) and the pentatonic scale. We
explore the mathematical foundations (frequency ratios,
logarithmic pitch scales, interval calculations) and scientific
principles (acoustics, resonance, harmonic overtones)
underlying these systems and provide tables and worked
examples to quantify interval sizes and trade-offs. The goal
is a deep analytical view of how tuning is structured and
understood in both European and Chinese musical science,
supported by historical and theoretical evidence.

MATHEMATICAL FOUNDATIONS OF TUNING

Frequency Ratios and Intervals: At the core of tuning theory
is the idea that musical intervals correspond to frequency
ratios of small integers. The simplest example is the octave,
a doubling of frequency with ratio 2:1. The next most

fundamental interval is the perfect fifth with ratio 3:2[1].
Pythagorean tradition (both European and Chinese) chose
the 3:2 fifth as the “generator” for scales because it is the
next simplest ratio after the octave, corresponding to the
third harmonic of a string (hence a very consonant interval)
[2]. In any tuning system based on pure intervals, combining
intervals means multiplying their frequency ratios. For
example, a perfect fifth (3:2) above a middle C (say 256 Hz)
gives G at 256 x 3/2 = 384 Hz; a perfect fourth (4:3) above
that G returns to the octave C: 384 x 4/3 = 512 Hz, exactly
double 256 Hz. This demonstrates how 3:2 and 4:3 (a fifth up
and a fourth up) complement each other to span an octave
(3/2 x4/3 =2) in a pure ratio system[3].

Logarithmic Pitch Scaling (Cents):

Human perception of pitch is approximately logarithmic,
making it mathematically convenient to measure intervals
on a logarithmic scale. Modern tunings use the cent unit: 1
octave = 1200 cents by definition, so one equal-tempered
semitone is 100¢[3][4]. The size in cents of any interval with
frequency ratio r is given by:

C=1200 x log,(1)

For example, a perfect fifth (r = 3/2) is:
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C =1200 x log,(3/2) = 701.96 cents, which is very close to
702 cents.

In twelve-tone equal temperament (12-TET), the octave is
divided into 12 exactly equal semitones of 100 cents each.
The frequency of the nth semitone above a reference pitch
fo is given by:

fo=fyx2m2

Here, 212 % 1.059463 is the constant ratio between adjacent
semitones[4]. This exponential spacing means pitch
relationships become additive in cents (or semitone units),
which greatly simplifies modulation (changing keys).

The table 1 below compares three tuning systems—Equal
Temperament, Pythagorean Tuning, and Just Intonation—for
the C major scale, showing both frequencies (Hz) and pitch
positions in cents relative to C.

Table 1. Equal Temperament, Pythagorean Tuning, and Just Intonation

Note Equal Equal Pythagorean | Pythagorean |]JustIntonation |Just Intonation
Temperament (Hz) | Temperament (¢) | (Hz) (¢) (Hz) (¢)

C4 261.626 0 261.626 0.0 261.626 0.0

D4 293.665 200 294.329 203.91 294.329 203.91

E4 329.628 400 331.12 407.82 327.032 386.31

F4 349.228 500 348.834 498.04 348.834 498.04

G4 391.995 700 392.438 701.96 392.438 701.96

A4 440.0 900 441.493 905.87 436.043 884.36

B4 493.883 1100 496.68 1109.78 490.548 1088.27

C5 523.251 1200 523.251 1200.0 523.251 1200.0

Worked Examples This approach will be applied in our analysis to compare

e  Perfect fifth (pure): r =3/2 - C = 1200 x log,(3/2) =
701.96¢.

e Perfect fifth (12-TET): r = 27/*® » 1.4983 - 700.0¢.
e  Major third (pure): r=5/4 =1.25 - = 386.3¢.

e Major third (12-TET): r = 2%/ = 2%/3 » 1.2599 -
400.0¢.

The equal-tempered perfect fifth is 700.0¢ (ratio 2¢7/1?
x 1.4983), slightly flatter than the pure 3:2 = 701.96¢; the
equal-tempered major third is 400.0¢ (ratio 2/ = 21/3 »
1.2599), slightly sharper than pure 5:4 ~ 386.3¢.

INTERVAL COMPUTATION

In ratio-based tuning, intervals are calculated by multiplying
or dividing known frequency ratios. For example, a major
third in just intonation has a ratio of 5:4, meaning its
frequency is 1.25 times that of the root note[5]. Similarly, a
minor third has a ratio of 6:5, or 1.2 times the root frequency.
To combine intervals, the ratios are multiplied. For instance,
multiplying a whole tone (9:8) by another whole tone (9:8)
gives:

(9/8) x (9/8) = 81/64 ~ 1.2656

This result corresponds to a Pythagorean major third, which
is approximately 407.8 cents.

Inlogarithmicterms,interval sizes canbe added or subtracted
directly in cents. For example:

Perfect fifth (=702¢) — Perfect fourth (*498¢) = Major second
~204¢)

Using cents in this way allows for straightforward
comparison of interval sizes across different tuning systems.

European and Chinese tunings.

ACOUSTIC  PRINCIPLES
RESONANCE

Consonant intervals arise from the harmonic overtone series:
a vibrating string or air column produces partials at integer

multiples of a fundamental frequency f0[6]'

AND HARMONIC

Example: If the fundamental is C; at f, = 100 Hz, then:
1st harmonic: f; = 1 x f5 = 100 Hz (C)

2nd harmonic: f, = 2 x fo = 200 Hz (C5)

3rd harmonic: f3 = 3 x f; = 300 Hz (G3)

4th harmonic: f, = 4 x f, =400 Hz (C4)

5th harmonic: f5 = 5 x f, = 500 Hz (E4)[7]

These naturally occurring harmonics correspond to simple
frequency ratios:

Octave: 2:1
Perfect fifth: 3:2
Perfect fourth: 4:3
Major third: 5:4

Small-integer ratios sound smooth because two waveforms
realign periodically. In a perfect fifth 3:2 (e.g.,, 200 Hz vs. 300
Hz), the periods are T; = 1/200 = 0.005 s and T, = 1/300
= 0.00333 s; they coincide every 0.01 s (LCM(T,, T;) =
0.01s). The tones also share harmonics—here, 600 Hz (the
3rd harmonic of 200 Hz and the 2nd of 300 Hz)—which
reinforces the blend and minimizes beating [8]. By contrast,
intervals with complex or inharmonic ratios do not align
periodically; their waveforms never fully sync up, leading to
audible beats or roughness.
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Modern acoustics confirms that simple frequency ratios
underpin consonance[9]. Notes related by ratios like 2:1, 3:2,
4:3, 5:4 align with overlapping overtones, creating stability.
Psychoacoustic phenomena, such as combination tones,
enhance this effect—for example, a perfect fifth (C-G) may
produce a difference tone an octave below the lower note,
reinforcing the harmony[14]. In contrast, Dissonant spans
such as the tritone generate combination tones that fail to
integrate harmonicall.

Historically, tuning systems have leveraged these facts. Just
intonation and Pythagorean tuning preserve selected pure
ratios to maximize consonance in key intervals, whereas
tempered systems deliberately nudge those ratios to trade a
bit of purity for the ability to modulate freely among keys.

RESONANCE, [INSTRUMENT PHYSICS, AND
EUROPEAN TUNING SYSTEMS

Musicalinstrumentsare designed around natural resonances.
A string or air column tuned to frequency f will resonate at f
and its harmonics 2f; 3f, 4f, etc. Thus, when two notes are in a
pure ratio, one can excite resonances in another instrument
tuned to a harmonic of it. For example, if a piano’s A string
(220 Hz) is struck, a properly tuned E (a fifth above, ~330
Hz) on another instrument might resonate subtly, because
330 Hz is the 3rd harmonic of 110 Hz (half of 220 Hz) and
aligns with the overtone series of A.

A piano string A have: f, = 220 Hz
Anote E a perfect fifth above has: f, = (3/2) x 220 =330 Hz

On another instrument, 330 Hz is the 3rd harmonic of: fbase =
(1/2) x 220 =110 Hz

In equal temperament, the perfect fifth is slightly narrower
than pure: r5(ET) = 297/*? » 1.4983 (700.0¢) versus the pure
3/2 = 1.5 (*701.96¢). This small misalignment weakens
sympathetic resonance slightly and introduces gentle
beating—one reason ensembles with flexible pitch adjust by
ear. Likewise, string quartets often lower their major thirds
from the ET ratio 2“/*? = 2/3 » 1.2599 (400.0¢) toward
the pure 5/4 = 1.25 (*386.3¢) in cadences to maximize
consonance.

In summary, the scientific ideal in tuning is to match
intervals to harmonic-series ratios to maximize consonance
and resonance. Constraints of musical practice, however,
sometimes require detuning those pure ratios - and the
contrast between European and Chinese tuning histories
largely centers on how each tradition managed this
consonance-versus-flexibility tradeoff.

European Tuning Systems: From Pure to Tempered

European music theory has evolved through several tuning
systems, each balancing pure harmonies with the ability to
play in multiple keys. Pythagorean Tuning (3-limit tuning)
uses only the prime factors 2 and 3, stacking pure fifths (3:2)
and adjusting octaves (2:1) to bring pitches into a single
octave range[1][2]. For example, starting from C:

G=Cx(3/2)
D=Gx(3/2)=Cx(9/8)
A=Dx(3/2)=Cx(27/16) ..

Continuing this process yields a 7-note diatonic scale built
from pure fifths.

Pythagorean tuning produces perfectly pure fifths and
fourths:

Perfect fifth: 3/2 =1.5 - 702.0¢
Perfect fourth: 4/3 ~ 1.3333 - 498.0¢
Whole tone: 9/8 =1.125 — 203.9¢

However, its major thirds and sixths are sharper than just
intonation values:

Pythagorean major third: 81/64 = 1.265625 — 407.8¢ (vs.
Just major third: 5/4 = 1.25 — 386.3¢) and the Difference:
407.8¢ - 386.3¢ > +21.5¢

Pythagorean major sixth: 27/16 = 1.6875 = 905.9¢ (vs. Just
major sixth: 5/3 ~ 1.6667 — 884.4¢) and the Difference:
905.9¢ - 884.4¢ ~ +21.5¢

The sharpening comes from stacking fifths to form a third
instead of using the harmonic 5th partial. In medieval
practice, such thirds were treated as dissonances.

The Pythagorean comma arises because twelve fifths
overshoot seven octaves: (3/2)'? ~ 129.7463, while 27 =
128 — ratio difference = (3/2)2 + 27 ~ 1.01364 — 23.46¢.
To close the circle, one “wolf fifth” is narrowed heavily (often
=680¢). This forces one interval, called the ‘wolf fifth’, to be
narrowed significantly—often to about 680¢—to close the
circle of fifths. The resulting 12 semitones are unequal: there
are seven smaller diatonic semitones (~90.22¢) and five
larger chromatic semitones (~113.68¢)[1][3][4].

Compared with 12TET:

Minor second: Pythagorean ~ 90.22¢ vs. 12-TET = 100¢
Major second: Pythagorean = 203.91¢ vs. 12-TET = 200¢
Major third: Pythagorean = 407.82¢ vs. 12-TET = 400¢
Perfect fifth: Pythagorean = 701.96¢ vs. 12-TET = 700¢
Tritone discrepancy:

Augmented fourth: 729/512 ~ 1.42578 — 611.73¢
Diminished fifth: 1024/729 ~ 1.40466 — 588.27¢

Difference: 611.73¢ - 588.27¢ =
comma)

23.46¢ (Pythagorean

In 12-TET, the tritone is fixed at exactly 600¢, eliminating the
split.

Figure 1 illustrates the difference: equal temperament has
uniformly 100¢ semitones, whereas Pythagorean tuning
alternates smaller and larger step sizes. Despite these
issues, Pythagorean tuning was satisfactory for medieval
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monophonic and modal music. Pure fifths gave melodies a
resonant hollowness, and since harmony (chords) was not
yet complex, the wolf interval could be avoided by staying in
certain keys. Melodically, the unequal step sizes produced by
3:2 cycles lent medieval modes a distinctive character. When
polyphonic harmony expanded in the Renaissance to treat
thirds as consonances, the sharp Pythagorean third became
problematic[5], leading to new tuning strategies.

Comparison of Pythagorean Tuning vs. 12-Tone Equal Temperament

(One Octave: Cto C)
- /
800 /

500 /
w00 /

C C# D D# E F Fé# G G# A A# B c

Scale Notes (Key of C Major)

1200 — Equal Temperament (100¢ per semitone)
X Pythagorean Tuning

Interval Size (cents)

Figure 1. Comparison of Pythagorean tuning vs. 12-tone

equal-tempered intervals (one octave, C to C). The horizontal

axis shows the scale notes in the key of C major; the vertical

axis shows interval size in cents (1200¢ = one octave). The

black line indicates the equal-tempered scale (each semitone

=100¢). Green points show the Pythagorean tuning intervals
based on pure fifths.

Compared with 12-tone equal temperament (12-TET), which
fixes every semitone at exactly 100¢, Pythagorean tuning
has more variation. Minor seconds (~90¢) are noticeably
smaller, major seconds (~204¢) slightly larger, and the major
third (~408¢) is sharper than the equal-tempered 400¢.
The perfect fifth (~702¢) remains nearly pure, only about
2¢ sharper than in 12-TET. The largest difference occurs at
the tritone. In 12-TET, the tritone is a single 600¢ interval.
In Pythagorean tuning, it splits into an augmented fourth
(»611.7¢) and a diminished fifth (588.3¢), differing by
the Pythagorean comma (~23.5¢)[11]. Equal temperament
merges F# and G b into one pitch, eliminating the comma
difference. Other intervals differ by only about 2-10¢, small
enough to be acceptable in most performance contexts. This
explains why 12-TET became a successful compromise: it
tempers all intervals slightly so that music can be played in
all keys without intolerable dissonance.

JUST INTONATION (5-LIMIT TUNING)

Just intonation incorporates not only the pure perfect fifth
(3:2) but also the pure major third (5:4), along with related
intervals such as the minor third (6:5) and major sixth (5:3),
all derived from the harmonic series[7][8]. In a just diatonic
scale—described by Gioseffo Zarlino in 1558, though its
origins go back to Ptolemy—the major triads are tuned
perfectly. For example, in a C major chord (C-E-G):

C:E = 5:4 -» major third = 386.3¢ (pure)

C:G = 3:2 — perfect fifth = 702.0¢ (pure)

These ratios yield extremely smooth consonances. The just
major third at 386.3¢ produces far less beating than the
Pythagorean major third at 407.8¢.

However, the system cannot keep all fifths at the pure 3:2
ratio if the major thirds are set at 5:4. In one just-tuned C
scale, for example:

A =5:3 (major sixth above C)
D =9:8 (major second above C)
Fifth D:A = 40:27 — = 680¢ (narrow, poor consonance)

This problem arises because introducing pure thirds creates
additional commas, most notably the syntonic comma:

Syntonic comma = 81:64 vs. 5:4 - = 21.51¢

To preserve just major thirds, some fifths must be narrowed
by this comma, making them less consonant.

In practice, just intonation works beautifully within a single
key but becomes unstable if the music changes key or uses
chords outside the home tonality. Each key requires its
own adjustments—either extra pitches for enharmonic
equivalents or physical retuning—which is impractical for
fixed-pitch instruments across many keys.

MEANTONE TEMPERAMENT

During the Renaissance, meantone temperaments, especially
quarter-comma meantone, became widely used. The term
‘meantone’ refers to tuning each whole tone so that it
lies midway between pure intervals. In quarter-comma
meantone, each perfect fifth is flattened by one quarter of the
syntonic comma—about (1/4 x 21.51¢ = 5.38¢)—resulting
in a fifth measuring roughly 696.6¢ instead of the pure 702¢.
This adjustment produces a major third of exactly 386.3¢,
which corresponds precisely to the pure 5:4 ratio, because it
is formed from two tempered whole tones of approximately
193.16¢ each[12].

This tuning created exceptionally consonant triads, perfectly
suited to the smoother harmonic language of the 16th and
17th centuries. However, the trade-off was that traveling far
around the circle of fifths introduced an even more severe
‘wolf’ interval than in Pythagorean tuning. Depending on
how the temperament was arranged, the wolf fifth could be
as large as 737¢ or as small as 648¢, making remote keys
practically unusable[10]. Furthermore, enharmonic notes
such as G and A b were tuned differently, so they were not
interchangeable. For example, G# tuned as the major third
above E b could differ noticeably from A b derived from a
chain of fifths starting on C. To address this, some keyboard
instruments were built with split keys to provide separate
pitches for such enharmonic equivalents.

Meantone temperament represented an effective compromise
in the late Renaissance and early Baroque periods for music
that did not modulate far from its home key. It maintained
the purity of the most frequently used intervals — fifths and
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thirds — while sacrificing the usability of distant keys. This
balance between consonance in common harmonies and
dissonance in remote ones reflects the musical priorities of
its time.

EQUAL TEMPERAMENT (12-FET)

By the late 18th century, well temperaments allowed
performance in all keys (with differing key colors). Through
the 19th-20th centuries, 12tone equal temperament (12TET)
became the standard that makes all keys equivalent[11]. In
12TET each semitone is 100¢, and only the octave is pure.
The perfect fifth is 207/*® ~ 1.4983 — 700.0¢ (~1.96¢ flatter
than the pure 3:2 ~ 701.96¢); the major third is 2¢/*? = 21/3
~1.2599 — 400.0¢ (=13.69¢ sharper than pure 5:4 ~ 386.3¢).
These small, even offsets remove wolf intervals and enable
uniform modulation. Historically, the mathematics of equal
division of the octave was worked out independently by Zhu
Zaiyu (1584) and Simon Stevin (1585); universal adoption
followed much later with modern instrument making and
ensemble practice[12].

In equal temperament, intervals are defined by powers of 2,
divided into 12 equal semitones.

Table 2. Comparison of Equal Temperament vs. Pure Tuning

Perfect fifth(12-TET): 27/!? ~ 1.4983 — 700.0¢ (pure = 3/2
— 701.96¢)

Major third(12-TET):
5/4 — 386.31¢)

2412 = 213 % 1,2599 — 400¢ (pure =

These values are irrational numbers, meaning the intervals no
longer correspond to small whole-number ratios — a sharp
break from Pythagorean and just intonation systems[14].

Because 12TET intervals are powers of 2 split into 12 equal
steps, their ratios are irrational and no longer match simple
smallinteger relationships. As a result, partials do not align
perfectly with the harmonic series. This produces a mild
beating in chords that is absent in pure just intonation[13].
Over time, listeners have adapted so that equal-tempered
intervals still sound consonant, though with a subtly different
tone color. Crucially, equal temperament was the first
systematic tuning to allow free modulation and the use of
all 24 major and minor keys on a single instrument without
retuning. This consistency led it to become the dominant
Western tuning system since the 18th century[11].

Interval Equal Temperament (Ratio) Pure Tuning (Ratio) Difference
Perfect Fifth 2712 % 1.4983 3/2=1.5 ~-0.0017
Major Third 213 %1.2599 5/4=1.25 ~+0.0099

SUMMARY OF EUROPEAN SYSTEMS

Early European tuning began with Pythagorean practice,
which prioritizes pure 3:2 fifths (* 701.96¢) but yields
wide major thirds at 81:64 (x 407.8¢); the accumulation of
pure fifths introduces the Pythagorean comma (= 23.46¢),
producing wolf intervals in certain keys. As harmonic writing
expanded, 5-limit just intonation sought purer sonorities
by using 5:4 major thirds (= 386.31¢) alongside 3:2 fifths,
but the syntonic comma (81:80 =~ 21.51¢) made fixed-key
usage and modulation difficult. Meantone temperaments
then tempered the fifths to favor pure thirds—most
famously, quarter-comma meantone narrows each fifth by
x 5.38¢ to about 696.6¢—which improves local consonance
while degrading remote keys. Ultimately, 12-tone equal
temperament divides the octave into equal semitones (2%/1?
~ 1.059463, set to 100¢ exactly); in this system the fifth
is 700.0¢ and the major third is 400.0¢, eliminating wolf
intervals, aligning enharmonic spellings, and creating key
equivalence around the circle of fifths. The arc from small-
integer ratios (3/2, 5/4) to the irrational roots of two
reflects a conscious trade-off—recognized by the nineteenth
century—exchanging a measure of pure consonance for the
versatility required by frequent modulation and complex
harmonic progressions[15][1].

TRADITIONAL CHINESE TUNING (1 —1#) &
SANFEN SUNYI

Chinese music theory developed its own framework for
pitch, rooted in nature and philosophy, yet mathematically

similar to the Western Pythagorean approach. The ancient
system centers on the + —ff (shi’ér 1ii) or 12 lii pitch pipes
- twelve fundamental pitches analogous to the chromatic
scale. According to tradition, these were generated by the
scholar Ling Lun (c. 3rd millennium BCE, mythology) and
later formalized in texts like the Liishi Chungqiu (c. 239 BCE).

The method for generating the 12liiis called — 43825 (sanfén
sunyl), meaning “three-part subtracting and adding,” which
is mathematically equivalent to the cycle of fifths. Starting
from the fundamental pitch (the first lii, Hudngzhong % ##
or ‘Yellow Bell"):

e Subtract one third of the tube length — length = (2/3)
x original — frequency x (3/2) — perfect fifth up. « Add
one third of the tube length — length = (4/3) x original —»
frequency x (3/4) — perfect fourth down[14].

By alternating these operations (up a fifth, down a fourth
to stay within an octave), Chinese theorists produced a
sequence of 12 notes, identical in logic to Pythagorean tuning
but expressed in pipe lengths. This is exactly the Pythagorean
tuning logic expressed in terms of pipe lengths. The names
of the 12 lii in order of generation (fifths) are recorded, for
example: Huangzhong (1), Linzhéng (a fifth up), Taict, Nanld,
Guixi, Yingzhong, Ruibin, Dall, Yizé, Jiazhong, Wiyi, Zhongli
(12th)[15]. When arranged in order of pitch within one
octave, these correspond to a chromatic-like scale[1]. Early
Chinese texts explicitly note the cosmological significance of
completing the 12-tone cycle, associating the 12 lii with the
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months of the year, directions, etc., implying a full circle of
fifths had mystical import[2].

Like the Pythagoreans, Chinese scholars discovered that
after generating 12 fifths, one does not exactly return to a
perfect octave. The 13th pitch is slightly higher than a perfect
octave above the first. The Han Dynasty scholar Jing Fang (3%
J7, 78-37 BCE) extended the cycle to 60 fifths, searching for
a closer unison return[3].

He found that after 53 fifths you nearly return to the
starting note (within about 0.01% frequency difference):
(3/2)53x231

Error = 3.6¢

In modern terms, Jing Fang recognized that 53 pure fifths =
31 octaves. Jing Fang poetically called this ‘the difference of
one day[5]. It is astonishing that Chinese theory understood
the 53-fifth near-equivalence two millennia before
Europeans (Nicholas Mercator in 1660s) did[4]. This level
of mathematical insight shows the sophistication of ancient
Chinese acoustical science.

TWELVE LU AND THE PENTATONIC SCALE

Traditional Chinese music centers on the pentatonic
scale—a five-note subset of the 12 li (and of the seven-
note system with added bianyin %%). In Gong mode the
degrees correspond to do-re-mi-sol-la. If Hudngzhong is
aligned with Western C, a common pentatonic is C-D-E-G-A

(omitting F and B), obtained by the cycle of fifths—C - G =
D - A - E—with octave reductions as needed. Thus, the C
major pentatonic is embedded within the 12 lii generated by
sanfen sunyi [3].

Chinese practice traditionally deemphasized the leading-
tone seventh and the fourth, so the pentatonic conveniently
avoids the most dissonant Pythagorean spans (major
seventh, tritone). The major third (C-E) remains; in the 12-
lii framework it is the Pythagorean 81:64 (407.8¢), brighter
than a just 5:4 third. Singers may shade it slightly lower
toward 5:4, and instrumental contexts can treat any beating
as a familiar color rather than a defect[5]. Because Chinese
music is not triad-based, a “major third” functions chiefly as a
melodic step, not a chordal consonance requiring purity[4].

COMPARATIVE ANALYSIS OF TUNING SYSTEMS

By the Qing Dynasty and the European Enlightenment (18th-
19th centuries), cross-cultural exchange in music theory
began to recognize the connections between these tuning
approaches. Both traditions confronted the Pythagorean
comma and ultimately converged on equal temperament.
This section compares interval sizes and consonance
across just intonation, Pythagorean tuning, and 12-tone
equal temperament (12-TET), using C as the reference; just
and Pythagorean are shown as ratios, and cents (¢) give
logarithmic sizes.

Table 3. Intervals from C in just intonation, Pythagorean tuning, and equal temperament. Ratios are given for just and
Pythagorean; cent values (¢) indicate size on a logarithmic scale. (The “same” label indicates intervals that coincide between
just and Pythagorean for those cases not involving the prime 5.)

Interval (C-*) Just Intonation (ratio, cents) | Pythagorean (ratio, cents) Equal Temperament (cents)
Major second (C-D) |9:8=1.125 (203.9¢) 9:8 = 1.125 (203.9¢) (same) 200.0¢
Major third (C-E) 5:4 =1.25 (386.3¢) 81:64 ~ 1.2656 (407.8¢) 400.0¢
Perfect fourth (C-F) |4:3 ~1.3333 (498.0¢) 4:3 =1.3333 (498.0¢) (same) 500.0¢
Perfect fifth (C-G) 3:2=1.5(701.96¢) 3:2=1.5(701.96¢) (same) 700.0¢
Major sixth (C-A) 5:3%1.6667 (884.4¢) 27:16 = 1.6875 (905.9¢) 900.0¢
Octave (C-C’) 2:1=2.0(1200¢) 2:1=2.0(1200¢) 1200¢

Note: In Pythagorean tuning, the major second and perfect fourth above are the same as in just intonation (since those do not
involve the prime 5), whereas the intervals involving the 5th harmonic (major third, major sixth) differ significantly. Equal
temperament “splits the difference” in those cases, tempering the pure just and Pythagorean intervals to a middle value[5][6].

The Chinese 12-1i corresponds to the Pythagorean column
above: core melodic intervals like the fifth (3:2) and fourth
(4:3) are pure. The pentatonic’s major third (C-E) appears
as 81:64 (x407.8¢)—somewhat wide—yet singers often
shade it lower toward 5:4 for sweetness; and because
triadic harmony is not central, a wide third is typically less
problematic.

Pythagorean systems can produce wolf intervals and bright
thirds, spurring new temperaments in Europe. In China,
heavy pentatonic use largely sidestepped these spans; with
broader adoption of seven-note scales and Western influence
inthe 19th-20th centuries, 12-TET became standard. Notably,

Zhu Zaiyu (1584) had already computed an equal-tempered
division closely matching the later European adoption [7].

RESONANCE AND TIMBRE

Instrument design and practice reinforced these tunings.
In Europe, the violin family (G-D-A-E) favors fifths, and
flexible-pitch performers adjust intonation (e.g., narrowing
major thirds in chords). In China, lutes such as pipa/ruan
were historically fretted to 12-1i (many modern versions
approximate 12-TET), and the guqin’s harmonic markers
(3/2,4/3,5/4) reflect overtone awareness.

Both traditions also engaged in direct experimentation. In
the 11th century, the Chinese polymath Shen Kuo studied
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how temperature affected the pitch of lute strings and
pipe lengths. In the 17th century, the French scholar Marin
Mersenne precisely measured string frequencies and
harmonics, laying foundations for modern acoustics. By
the 19th century, European scientists such as Helmholtz
explained earlier tuning practices through overtone beats
and consonance theory.

CONCLUSION

European and Chinese tuning systems demonstrate a parallel
development in music science. Both addressed the same
mathematical problem of dividing the octave and preserving
consonance, yet each prioritized intervals according to
musical aesthetics. European practice gradually emphasized
the ability to play in all keys, favoring even spacing over pure
ratios, whereas Chinese music for centuries retained pure
fifths and a pentatonic framework that reduced the need
for tempering. Ultimately, both traditions adopted 12 tone
equal temperament, showing that the tuning problem and its
solution are universal. Musicologists view these systems not
as separate worlds but as different expressions of the same
idea: the interplay of mathematics, physics, and art in the
pursuit of musical harmony:.
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