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Abstract: The Bogliubov transformation was used in this study to diagonalize the t-J model Hamiltonian yielding 
the quasi-particle Hamiltonian and the thermodynamic properties of high temperature superconductors. 
Formulae for ground state Energy , specific heat,   , and entropy,  ,of high temperature superconductors 
have been derived in the framework of the t-J model. Transition temperature for Lanthanum Strontium Copper 
Oxide (LSCO) in the t-J formalism is obtained . Transition temperature for Yttrium Barium Copper 
Oxide (YBCO) in the t-J formalism is obtained . Calculated Tc that is higher than the experimental 
value has been obtained for the LSCO and YBCO Cuprates. Highest heat capacity of the superconducting state 
in the t-J model is found to be  while the highest entropy value is 3.15×10-3eV/K for high-Tc 
superconductors. The total energy of the system increases exponentially with the temperature. 
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t-J model Model based on electron hoping and exchange energy

Tl2212 Thallium-Barium-Calcium-Copper-Oxide

U On-site Coulomb energy
U k,Vk Transformation constants

YBCO Yttrium-Barium-Copper-Oxide

Introduction
The problem of the nature of interactions between charge carriers and the elementary excitations which lead 
to superconductivity in the doped copper oxides can be studied in the two-dimensional Hubbard model, and 
its strong coupling limit, the t-J model [3, 13]. This model is generally assumed to be the simplest model pos-
sibly able to describe some essential features of these materials, an important feature being the metal-insulator 
transition on doping. The Hubbard model, based on the electron- electron interaction could explain super-
conductivity on a two- dimensional square lattice of copper oxide. It considered strong repulsive Coulombic 
interaction energy, U, on lattice sites and gave the Hamiltonian of the interacting electrons in terms of hoping 
energy matrix, t and electron creation and annihilation operators on neighbor sites, (i and j),  and  
respectively, and electron occupation number operators,  [9]. The Hamiltonian , is given in equation 1;

                                                                                                                                                       (1)                                       

The purpose of the two-dimensional Hubbard model was to investigate whether the stripe states exist in the 
electron doped cuprate, Niodium Celenium Copper Oxide (NCCO) or the bilayer system such as 
. Using the variational Monte Carlo method for the two dimensional   Hubbard model, it was 
established that although the stripe states with the periodicity which were consistent with experiments for  

 are stabilized in the case of  , the positive   makes the stripe state unstable 
with the lowest energy state being the commensurate AF state [8]. This state is consistent with experiments 
on the electron doping system such as . In this model, it was also shown that the stripe state 
was sensitive to the value of  and the results indicated that the nesting condition was a critical factor to 
the stripe instability. However, this model does not give the nature of pairing mechanism that leads to the 
phenomenon of superconductivity. The physical properties of the superconducting state such as specific heat, 
thermal energy and entropy were not discussed. In this paper the physical properties of the superconducting 
state are discussed.

While working on the Hubbard model, Heisenberg found that when copper oxide is doped to half-filling level 
and the onsite Coulomb energy is increased to large values, the cuprate system becomes anti-ferromagnetic 
with neighboring electrons acquiring opposite spins; hence an electron would gain energy in hoping to the 
neighbor site where the other electron has opposite spin. This leads to pairing of electrons forming Cooper 
pairs that facilitate the process of superconductivity. The pairing electrons were found to exchange spins and as 
a result there exists exchange energy, J. 
From Hubbard model, the Heisenberg model was developed. The Heisenberg Hamiltonian was expressed in 
terms of spin exchange integral, J, the electron spin operators in the neighboring sites,    and , and the 
number operators,    and  

  
as:

 ( ),

( )    
4
i j

Heisenberg i j
i j

n n
H J S S= −∑

                                                                                         (2)
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Combining the Hubbard model and the Heisenberg model in the strong Coulomb repulsion or in the limit 
of large U resulted into the t-J model whose Hamiltonian is expressed in both the hoping integral t and spin 
transfer integral, J. The t-J model therefore, describes an anti-ferromagnetic system in which if in the initial and 
final states, alignment of electrons is such that they have like spins for closest neighbor electrons, both t and J 
will be zero, while opposite spin pairing will give rise to energy gain in the magnitude of 

2
J

±  or 2±(2 ) /t U    [9].

The spin fluctuation of superconductivity was first proposed as an explanation of superconductivity in heavy 
fermions [7]. This model is based on short range Coulomb interaction leading to an exchange coupling  J×Si 
Sj between near- neighbor copper spins  and  and strong spin fluctuations. The super-exchange constant is 
denoted by J. In cuprates it has an extremely high magnitude, J≈125meV. The underlying microscopic physics 
can be described by the t-J model. In this paper, we proceed to diagonalize the t-J model Hamiltonian in order 
to obtain the ground state energy of the quasi- particles and hence, the thermodynamic properties of the 
superconducting state.   

Objectives
1. To determine the quasi-particle Hamiltonian.

2. To investigate and determine the thermodynamic properties of high temperature superconductors.

Methodology

Theoretical Derivations
The t-J Hamiltonian is given as in equation 2 [6];

                                                                        (3)

Here, transfer energy,  for the nearest, second nearest, and third-nearest-neighbour pairs, 

respectively, and it is the electron transfer energy from  ith location to the jth location,  and   are the electron 

spin operators in the ith and jth locations respectively,  and  are electron occupation number operators,  

is the spin exchange energy while  stands for the Hermitian conjugate of the electron creation operator, 

 and annihilation operator, . The effect of the strong Coulomb repulsion is represented by the fact that 

the electron operators  and  are the projected ones in which double occupation is forbidden.  Thus the 
constraint for the operators is written as an inequality, given in equation 4;

                                                                                                                                                        (4)
This constraint can only be handled by the slave-boson method [2] by representing the electron operator as in 
equation 5;

                                                                                                  (5) 
where is the anti-symmetric tensor and  and  are the fermion operators,  ib and, id+  , 
are the slave- boson operators. To produce all the algebra of the fermion operators, we impose another constraint such 
that;

                                                                             (6)
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The results in equation 6 show that there are four states per site such that  correspond to the vacant state 
and  correspond to double occupancy. Excluding the double occupancy by applying the Pauli Exclusion 
Principle Equation 5 simplifies to equation 7 given as;

                                                                                                                           (7)

The Heisenberg exchange term written in terms of fermion operators is given in equation 8 [3];

                                            (8)

The number operators ni and nj are given by equation 9 and 10;

                                                                                                                         (9)

and

                                                                                                                    (10)

Thus, the product of ni and nj yields to equation 11;

                                                                                      (11)

Substituting equation 7 and its Hermitian conjugate, equation 8 and 11 in equation 3, yields the t-J Hamiltonian 
given in equation 12;

                                                     (12)

The Canonical Transformation

In order to obtain the quasi particles of the Hamiltonian given in equation 12, the Hamiltonian is diagonalized 
by performing a canonical transformation that will convert the old operators into new operators that obey the 
same commutation laws. The most convenient way to do this is by use of the Bogoliubov- Volatin transformation 
[5]. In the canonical transformation, new operators are defined as given in equation 13 -16;

(a) Electron Operators

Let the new operators,  be defined in terms of the old operators, as;

 i                                                             (13)

 The complex conjugates of the operators in equation 13 are;
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                                                               (14)

  ii                                                          (15)

Their complex conjugates are; 

                                                                      (16)

The constants  and  are the conversion constants [5]. A suitable choice of these constants 
facilitates the elimination the off-diagonal terms of the Hamiltonian. They are chosen to be real and positive 
constants and for fermions, they obey the condition in equation 17;

                                                                                                                                              (17)

With this condition, the new and old operators obey the same fermion anti-commutation relations as given in 
equation 18 and 19.

                                               (18)

and

                                                                                                                                                                                                            (19)

(b) Boson operators

Let the new boson operators  be defined in terms of the old operators  as in equation 20

                                                                                                                   (20)

The complex conjugate of the boson operator in equation 20 is now expressed as in equation 21;

                                                                                                                    (21)

Also, a new boson operator  is defined in terms of the old operators  as given in equation 22 and whose complex 
conjugate is given as complex conjugate 23.

                                                                                                                      (22)

                                                                                                                     (23)

For this canonical transformation, the new and old boson operators obey the same commutation relations such that;
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                                                    (24)

and

                                    (25)

The constants  and   are real and for bosons, they obey the condition that;

                                                                                                                (26)

On substituting the inverse transformation of the operators in equation 12, the t-J model Hamiltonian 
becomes;

                                     (27)

By considering the particle spin up state as  and spin down as ,  then the scattered particle spin states will 
be represented by   and  for spin up and spin down, respectively. Rearranging terms in equation 27 and 
neglecting the higher order terms, number operators and off-diagonal terms, the diagonalized form of the t-J 
Hamiltonian becomes;

{ }2 4 2 2 2 2

,

1 3 1 1 2   
4 4 2 2diag k k K k kk k k

k k kk

H J V V U V t U V′

− ′

 
= − + − − − 

 ∑ ∑
                                                                 (28)

On diagonalization, we find that; 

2kU =   and   1kV =                                                                                                                        (29)
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Results And Discussion
Numerical Calculations and Discussion

 i. Superconducting energy for the t-J system

Substituting equation 29 in equation 28, the magnitude of the ground state energy of the system,  becomes;

( )0E 4J t= +                                                                                                                                                         (30)

The energy, E, of the system can be expressed as a function of temperature, T by multiplying the ground-state 
energy, E0, by the thermal activation factor,  where k is Boltzmann’s constant and  is the energy 
gap [5]. The energy gap for high temperature superconductors is a very small quantity and it is generally 1% 
of the minimum energy of the system [5, 11]. Thus at any temperature T, the energy of the system is given as;

00 E0.01E
100kTkT0 0E E e E e

−−
= =                                                                                                             (31)

Substituting equation 30 in equation 31, the magnitude of energy of the system at any given temperature can 
be determined as;

( )
( )J 4t
100kT

E J 4t .e

 +
 − 
 = +                                                                                                                        (32)

ii. The specific heat capacity for the t-J system

The specific heat capacity at constant volume  of the system is obtained by determining the first derivative of 
the energy of the system with respect to temperature [5]. Hence, using equation 32, the magnitude of   can 
be calculated as in equation 33;

( )
( )J 4t

2
100kT

v 2
J 4t

c .e  
100kT

 +
 − 
 +

=
                                                                                                              (33)

iii. Entropy of the t-J system 

Entropy s of the system is obtained by evaluating the integral given in equation 34 [4];

      vc dT
s

T
= ∫

                                                                                                                             (34)

Where  is specific heat capacity at constant volume and  is the temperature of the system.

Thus the superconducting entropy by this model is given as; 

( )
( ) ( )4 4
100 1004

.

J t J t
kT kTJ t

s e k e
T

   + +
   − −   
   +

= −                                                                                                    (35)
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iv. Transition temperature for the t-J system

Transition temperature of the superconducting state, Tc is calculated based on the condition given in equation 

36 [4];

0      
cT T

c
T =

∂ 
= ∂                                                                                                                             (36)

Evaluating the partial derivative in equation 36 yields;

( )4
200c
J t

T
k

+
=

                                                                                                                                 (37)

Numerical Evaluation of the Transition Temperature in the T-J Model
Substituting the values J=0.13 eV and t=0.41eV for LSCO and k= 8.63×10-5 eV/K in equation 35, the numerical 
value of Tc for LSCO gives 102.5 K However, the experimental value of   for LSCO is 38 K [1]. The t-J model thus 
predicts a critical temperature value for LSCO that is 2.7 times higher than the present experimental value. 
Substituting J=0.17eV, t=0.44 eV for YBCO [12] in equation 35, the numerical value of  Tc=111.8 K, which is 
higher  than the current experimental value of 90 K [10] by 21.8 K. By applying the same calculations, then the 
room temperature superconductivity (Tc=300 K) in LSCO is possible if the transfer energy is 1.262 eV and 1.252 
eV in YBCO.

Since the lowest ever achieved experimental exchange energy for high-Tc superconductors is J=0.13 eV, it is held 
constant and used together with experimental Tc values for various high-Tc superconductors to calculate the 
appropriate transfer energies of the t-J system. The results are summarized in the Table 1.0.
Table 1.0: A summary of transfer energy values of the t-J system for various high-Tc superconducting cuprates

Cuprate Symbol Tc (K) Transfer energy, t (eV)
Bi2Sr2CuO6 Bi2201 ∼12 0.0193

Nd2−xCexCuO4 NCCO 24 0.0711
YBa2Cu3O 6+x YBCO 93 0.3688

Bi2Sr2CaCu2O8 Bi2212 95 0.3774
Tl2Ba2CuO6 Tl2201 95 0.3774
HgBa2CuO4 Hg1201 98 0.3904

Tl2Ba2CaCu2O8 Tl2212 105 0.4206
Bi2Sr2Ca2Cu3O10 Bi2223 110 0.4422
Tl2Ba2Ca2Cu3O10 Tl2223 125 0.5069
HgBa2CaCu2O8 Hg1212 128 0.5241
TlBa2Ca2Cu4O11 Tl1224 128 0.5198
HgBa2Ca2Cu3O10 Hg1223 135 0.5500

Two very important observations can be made from Table 1.0. First, it is observed that using the t-J model, 
the current critical temperature values of the various high-Tc superconducting cuprates can be achieved at 
transfer energy lower than the current experimental values. A good example is YBCO whose experimental 
transfer energy of 0.44 eV has been lowered to 0.3688 eV. This is a  19.3 % decrease. Secondly, the critical 
temperature increases with increase in transfer energy for high-Tc superconductors. It is, therefore, possible 
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to achieve higher Tc by increasing the value for t. This Transfer energy, t can be increased by increasing onsite 
Coulombic repulsion energy U since  [9]. The challenge experienced in this approach is that for a 
given superconductor, U is increased by increasing charge carriers on a centre and these charges can only be 
increased to a certain maximum value beyond which stability will not be sustained. The second challenge is that 
for t-J system, the experimental ratio  should be equal to a third. However, this can be overcome by increasing 
J proportionately.  

Numerical Values of Cv 
Using the experimental values J=0.13eV, t=0.41eV for LSCO, J=0.17eV, t=0.44eV for YBCO, the calculated value 
of cv is  for LSCO using T=Tc =102.5. Similarly, for YBCO,   at T=Tc=111.8 
K. In the derivation of ground state energy formula, all terms in the Hamiltonian were allowed to vanish and 
remained with the quasi particle excitation creation terms  so that only pairs of quasi particles could be excited. 
The minimum energy required to create such excitations is the exponential  [5]. Thus, the heat capacity 
drops with increase in the energy which leads to the creation of quasi particles. The variation of specific heat 
with temperature is shown in Figure 1.

                  
Fig1. Variation of specific heat with temperature

Numerical Entropy of the t-J 
The t-J model value of entropy at T=Tc =102.5 K for LSCO was calculated as  and 

for YBCO at T=Tc =111.8 K. It was established that Entropy varied with temperature as 
shown in Figure 2.

Fig2. Variation of entropy with temperature for the t-J model.
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The results shown in Figure 2 illustrate an exponential growth of entropy with temperature for both LSCO and 
YBCO. With small variation, the maximum entropy for LSCO and YBCO is approximately 3.13×10-3 eV/K .At 
maximum entropy, critical temperature of LSCO is Tc= 200 K and that of YBCO is Tc= 220 K. It was also noted 
that the rate of increase of entropy with temperature of the system for LSCO was higher than that of YBCO. 
High-Tc superconductivity requires low entropy hence YBCO is better in building superconductors that can 
work at room temperature.

Thermodynamic properties of small superconductors involving application of the Finite Temperature Variation 
–After- Projection (FT-VAP) technique in minimizing free energy of superconducting state established that the 
entropy of the system is given as where  is Boltzmann constant and  are the 
eigenvalues of the statistical operator in the Fock space composed by all the many body configurations with N 
particles. The variation of entropy with temperature graph was a smooth curve showing an exponential decrease 
of entropy with temperature from a maximum value of 0.125 eV/K. The trend of the graph is in agreement with 
t-J. The maximum value of entropy in the FT-VAP theory is lower than the corresponding value of the t-J system 
as expected since the FT-VAP theory is dealing with very low temperatures (0 K-5 K). 

Conclusion
In this work, t-J model Hamiltonian was diagonalized using Bogliubov-Volatin transformation and the quasi- 
particle ground state energy obtained. From the ground state energy, thermodynamic properties of high-Tc 
superconductors, namely, energy, heat capacity, entropy and critical temperature have been determined. It is 
revealed that the current experimental Tc values can be achieved at lower transfer energy, t. Additionally, Tc as 
a function of transfer energy,t, can be raised by raising t. The results obtained for Cv, and S are in fine agreement 
with the Finite Temperature- Variation After Projection (FT-VAP) study of thermodynamic properties of small 
superconductors. The t-J model predicts higher transition temperature in both electron-doped and hole-doped 
superconducting cuprates. The t-J model, being a model that captures strong electronic correlations in HTS 
predicts the possibility of achieving more than double the experimental value of Tc for the electron-doped 
LSCO.
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