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Introduction
The locations of the Lagrangian points in the restricted 

three-body problem (CRTBP) by assuming both the primaries 
as oblate spheroids with their equatorial planes coincident 
with the plane of motion was calculated in [6]. In [7] the location 
of the collinear points in the same problem was studied 
numerically for some systems of astronomical interest. These 
equilibria were shown to be unstable in general, though the 
existence of conditional infinitesimal (linearized) periodic 
orbits around them was established. However, the secular 
effect of oblateness of the primaries on the motion of the 
primaries was not included. Later the oblateness of only the 
more massive primary was considered and the secular effect 
of oblateness [8] on the mean motion of the primaries was 
included in [9, 10, 11]. In [9, 10], the critical mass value µc was found 
to decrease with oblateness. In [10, 11], a numerical investigation 
of the locations of the five equilibrium points was made for 
some systems of astronomical interest. Periodic solutions of 
the linearized equations of motion around the five equilibrium 
points were studied. The angular frequency in the z-direction 
(sz) was found to be more than the mean motion n. In [12] it 
was established that the oblateness induces a one-to-one 
commensurability at the exterior point L3 and at the interior 
point L2 for 0 ≤ µ ≤ ½ and at L1 no such commensurability 
exits. L2Series expansions were found for the long-periodic 
(s4) short-periodic (s5) orbits. s4 was found to increase and s5 

was found to decrease with oblateness.

In this paper we have included the secular effect of oblateness 
on the mean anomaly, argument of perigee and right ascension 
of ascending node [1]. We have utilized the new mean motion 
to study the locations of the collinear equilibrium points. We 
have proved the existence of one-to-one commensurability 
ratio between the planar angular frequencies (s3) and the 
corresponding angular frequency (sz) in the z-direction at the 
collinear point (L3).

Equations of Motion
The problem is defined in the non-dimensional pulsating 

synodic coordinate frame as given by Figure 1. The barycentre 
of the primaries mark the origin of the system which rotates 
about the z-axis (perpendicular to the plane of motion of 
primaries. The mass ratio is the ratio of the mass of less 
massive primary m2 to the sum of the masses of the primaries 
m1 + m2) which is unity in the non-dimensional system. Point 
represents the point mass (with infinitesimal mass).

The equations of motion in terms of the dimensionlessframe 
is given by Equations (1)[11, 13]. The forcefunction Ω [9, 11]  in the 
equations of motion is given by Equation (2). The oblateness of 
the more massive primary A1= (AE2-AP2)/5R2, AE and AP are 
equatorial and polar radii, respectively, and R is the distance 
between them, affects the force function of the system.
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Referring Figure 1, the distances r1 and r2 of P from the 
more massive and the smaller primaries are related and to the 
distances x and y from the origin by

Mean Motion

The mean motion equation (Equation 5) for this study is 
derived using the effect of J2, given by Equations (4)

[14],on the three orbital elements – Ms- mean anomaly, ωs - 
argument of perigee and Ωs- right ascension of the ascending 
node.

The mean motion n is the summation of the changes in Ms, 
ωs  and Ωs after one revolution [1],  given by

Location of Collinear Equilibrium Points
The equations of motion (1) are found to have singular 

solutions at five points [13] called the Lagrange points, 
liberation points or equilibrium points. Three of these 
equilibrium points (collinear equilibrium points - 𝐿1, 𝐿2 and 
𝐿3) lie in the line connecting the primaries and the other 
two (triangular equilibrium points - 𝐿4 and 𝐿5) form nearly 
equilateral triangles [11] with the primaries. These equilibrium 
points satisfy the conditions that the first derivatives of the 
force function equation equate to zero i.e., 𝛺𝑥 = 𝛺𝑦 = 0 [11, 13].

As the collinear equilibrium points lie on the 𝑥-axis, in 
addition to the conditions 𝛺𝑥 = 𝛺𝑦 = 0, they also satisfy 𝑦 = 
0. Therefore, by equating 𝛺𝑥 and 𝑦 to zero and making the 
corresponding substitutions from Equations (6), we get the 
seventh degree polynomials given by Equations (7), (8) and 
(9) for the locations of 𝐿1, 𝐿2 and 𝐿3, respectively, which upon 
solving with the help of MATLAB for different values of μ 
and A1 gives the locations of the collinear equilibrium[5]. It 
is interesting to note that all the three collinear points move 
towards the more massive primary with oblateness with the 
new mean motion [5]. Earlier in [11]with the mean motionn2 = 
L1 + 3A1/2, it was noticed that only moves towards the bary 
center.
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Figure 1:  Planar Restricted Three Body Problem in Dimensionless Synodic Coordinate Frame
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Polynomial approximations using Taylor’s series 
expansions for (9), we get

From (10) and (11), we notice that the equilibrium point L3 
moves towards the more massive primary with its oblateness.

As in [12], the angular frequency s3 and sz(L3) are given by:

The angular frequency s3 and sz(L3) are:

Commensurability at L3 

As can be seen from (14) and (15), at L3 the in-plane 
frequencies s3 is greater than sz without oblateness, however, 
both s3 and sz increase with oblateness effect. The increase in sz 
is more than in s3 with oblateness. So there is a possibility for 
one-to-one commensurability between the two frequencies, 
for a suitable choice of A1, for 0 ≤ µ ≤ ½.

The values of A1 has been obtained using MATHEMATICA 
with an initial estimate:

obtained by setting s3 = sz(L3) from (14) and (15). It may be 
noted that the values of A1 are small for small µ. For Saturn-
Titan system, the values of µ and A1 are 0.000236695 and 
0.000039653936, respectively [1]. It is interesting to note that 
the value of A1 obtained for one-to-one commensurability 
is 0.0000344978 for this system, which is very near to the 

actual 0.000039653936, respectively[1]. So the halo orbits 
of small size could be easily generated in this system. It is a 
very interesting result that the oblateness of the more massive 
primary can help in generating the halo orbits of small size 
around L3 in the Saturn-Titan system. Table 1 provides the 
values of mass parameter (µ) and oblateness coefficient (A1) 
for obtaining one-to-one commensurability for small values of 
µ. A1 values are one order less than µ.

Conclusions
With the secular perturbations effects of oblateness on 

argument of perigee, right ascension of ascending node and 
mean anomaly on the mean motion [1], it is found that the mean 
motion increases further. The CRTBP with the more massive 
primary as an oblate spheroid with its equatorial plane 
coincident with the plane of motion is studied with the new 
mean motion. The locations of the three Lagrangian points of 
the CRTBP are computed. Series expansion for the location 
of L3 is found. It is noticed that L3 moves towards the more 
massive primary with the inclusion of its oblateness.

We establish that there is ono-to-one commensurability 
ratio between the planar angular frequency (s3) and the 
corresponding angular frequency (sz) in the z-direction at the 
collinear point L3. This study will be useful in generating the 
halo orbits at L3 of small size For Saturn-Titan system, the 
values of the μ and oblateness coefficient (A1) for this system 
are 0.000236695 and 0.000039653936, respectively. It is 
interesting to note that the value of A1 obtained for one-to-one 
commensurability is 0.0000344978 for this system, which is 
very close to the actual value of 0.000039653936. Thus, halo 
orbits of small size can be generated in Saturn-Titan system at 
L3. Most satellites in halo orbit serve scientific purposes, such 
as space telescopes.
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